mirror of
https://github.com/go-gitea/gitea
synced 2025-01-15 04:04:26 +00:00
730 lines
18 KiB
Go
730 lines
18 KiB
Go
|
package hcl
|
||
|
|
||
|
import (
|
||
|
"errors"
|
||
|
"fmt"
|
||
|
"reflect"
|
||
|
"sort"
|
||
|
"strconv"
|
||
|
"strings"
|
||
|
|
||
|
"github.com/hashicorp/hcl/hcl/ast"
|
||
|
"github.com/hashicorp/hcl/hcl/parser"
|
||
|
"github.com/hashicorp/hcl/hcl/token"
|
||
|
)
|
||
|
|
||
|
// This is the tag to use with structures to have settings for HCL
|
||
|
const tagName = "hcl"
|
||
|
|
||
|
var (
|
||
|
// nodeType holds a reference to the type of ast.Node
|
||
|
nodeType reflect.Type = findNodeType()
|
||
|
)
|
||
|
|
||
|
// Unmarshal accepts a byte slice as input and writes the
|
||
|
// data to the value pointed to by v.
|
||
|
func Unmarshal(bs []byte, v interface{}) error {
|
||
|
root, err := parse(bs)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
return DecodeObject(v, root)
|
||
|
}
|
||
|
|
||
|
// Decode reads the given input and decodes it into the structure
|
||
|
// given by `out`.
|
||
|
func Decode(out interface{}, in string) error {
|
||
|
obj, err := Parse(in)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
return DecodeObject(out, obj)
|
||
|
}
|
||
|
|
||
|
// DecodeObject is a lower-level version of Decode. It decodes a
|
||
|
// raw Object into the given output.
|
||
|
func DecodeObject(out interface{}, n ast.Node) error {
|
||
|
val := reflect.ValueOf(out)
|
||
|
if val.Kind() != reflect.Ptr {
|
||
|
return errors.New("result must be a pointer")
|
||
|
}
|
||
|
|
||
|
// If we have the file, we really decode the root node
|
||
|
if f, ok := n.(*ast.File); ok {
|
||
|
n = f.Node
|
||
|
}
|
||
|
|
||
|
var d decoder
|
||
|
return d.decode("root", n, val.Elem())
|
||
|
}
|
||
|
|
||
|
type decoder struct {
|
||
|
stack []reflect.Kind
|
||
|
}
|
||
|
|
||
|
func (d *decoder) decode(name string, node ast.Node, result reflect.Value) error {
|
||
|
k := result
|
||
|
|
||
|
// If we have an interface with a valid value, we use that
|
||
|
// for the check.
|
||
|
if result.Kind() == reflect.Interface {
|
||
|
elem := result.Elem()
|
||
|
if elem.IsValid() {
|
||
|
k = elem
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Push current onto stack unless it is an interface.
|
||
|
if k.Kind() != reflect.Interface {
|
||
|
d.stack = append(d.stack, k.Kind())
|
||
|
|
||
|
// Schedule a pop
|
||
|
defer func() {
|
||
|
d.stack = d.stack[:len(d.stack)-1]
|
||
|
}()
|
||
|
}
|
||
|
|
||
|
switch k.Kind() {
|
||
|
case reflect.Bool:
|
||
|
return d.decodeBool(name, node, result)
|
||
|
case reflect.Float32, reflect.Float64:
|
||
|
return d.decodeFloat(name, node, result)
|
||
|
case reflect.Int, reflect.Int32, reflect.Int64:
|
||
|
return d.decodeInt(name, node, result)
|
||
|
case reflect.Interface:
|
||
|
// When we see an interface, we make our own thing
|
||
|
return d.decodeInterface(name, node, result)
|
||
|
case reflect.Map:
|
||
|
return d.decodeMap(name, node, result)
|
||
|
case reflect.Ptr:
|
||
|
return d.decodePtr(name, node, result)
|
||
|
case reflect.Slice:
|
||
|
return d.decodeSlice(name, node, result)
|
||
|
case reflect.String:
|
||
|
return d.decodeString(name, node, result)
|
||
|
case reflect.Struct:
|
||
|
return d.decodeStruct(name, node, result)
|
||
|
default:
|
||
|
return &parser.PosError{
|
||
|
Pos: node.Pos(),
|
||
|
Err: fmt.Errorf("%s: unknown kind to decode into: %s", name, k.Kind()),
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (d *decoder) decodeBool(name string, node ast.Node, result reflect.Value) error {
|
||
|
switch n := node.(type) {
|
||
|
case *ast.LiteralType:
|
||
|
if n.Token.Type == token.BOOL {
|
||
|
v, err := strconv.ParseBool(n.Token.Text)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
result.Set(reflect.ValueOf(v))
|
||
|
return nil
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return &parser.PosError{
|
||
|
Pos: node.Pos(),
|
||
|
Err: fmt.Errorf("%s: unknown type %T", name, node),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (d *decoder) decodeFloat(name string, node ast.Node, result reflect.Value) error {
|
||
|
switch n := node.(type) {
|
||
|
case *ast.LiteralType:
|
||
|
if n.Token.Type == token.FLOAT || n.Token.Type == token.NUMBER {
|
||
|
v, err := strconv.ParseFloat(n.Token.Text, 64)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
result.Set(reflect.ValueOf(v).Convert(result.Type()))
|
||
|
return nil
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return &parser.PosError{
|
||
|
Pos: node.Pos(),
|
||
|
Err: fmt.Errorf("%s: unknown type %T", name, node),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (d *decoder) decodeInt(name string, node ast.Node, result reflect.Value) error {
|
||
|
switch n := node.(type) {
|
||
|
case *ast.LiteralType:
|
||
|
switch n.Token.Type {
|
||
|
case token.NUMBER:
|
||
|
v, err := strconv.ParseInt(n.Token.Text, 0, 0)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
if result.Kind() == reflect.Interface {
|
||
|
result.Set(reflect.ValueOf(int(v)))
|
||
|
} else {
|
||
|
result.SetInt(v)
|
||
|
}
|
||
|
return nil
|
||
|
case token.STRING:
|
||
|
v, err := strconv.ParseInt(n.Token.Value().(string), 0, 0)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
if result.Kind() == reflect.Interface {
|
||
|
result.Set(reflect.ValueOf(int(v)))
|
||
|
} else {
|
||
|
result.SetInt(v)
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return &parser.PosError{
|
||
|
Pos: node.Pos(),
|
||
|
Err: fmt.Errorf("%s: unknown type %T", name, node),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (d *decoder) decodeInterface(name string, node ast.Node, result reflect.Value) error {
|
||
|
// When we see an ast.Node, we retain the value to enable deferred decoding.
|
||
|
// Very useful in situations where we want to preserve ast.Node information
|
||
|
// like Pos
|
||
|
if result.Type() == nodeType && result.CanSet() {
|
||
|
result.Set(reflect.ValueOf(node))
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
var set reflect.Value
|
||
|
redecode := true
|
||
|
|
||
|
// For testing types, ObjectType should just be treated as a list. We
|
||
|
// set this to a temporary var because we want to pass in the real node.
|
||
|
testNode := node
|
||
|
if ot, ok := node.(*ast.ObjectType); ok {
|
||
|
testNode = ot.List
|
||
|
}
|
||
|
|
||
|
switch n := testNode.(type) {
|
||
|
case *ast.ObjectList:
|
||
|
// If we're at the root or we're directly within a slice, then we
|
||
|
// decode objects into map[string]interface{}, otherwise we decode
|
||
|
// them into lists.
|
||
|
if len(d.stack) == 0 || d.stack[len(d.stack)-1] == reflect.Slice {
|
||
|
var temp map[string]interface{}
|
||
|
tempVal := reflect.ValueOf(temp)
|
||
|
result := reflect.MakeMap(
|
||
|
reflect.MapOf(
|
||
|
reflect.TypeOf(""),
|
||
|
tempVal.Type().Elem()))
|
||
|
|
||
|
set = result
|
||
|
} else {
|
||
|
var temp []map[string]interface{}
|
||
|
tempVal := reflect.ValueOf(temp)
|
||
|
result := reflect.MakeSlice(
|
||
|
reflect.SliceOf(tempVal.Type().Elem()), 0, len(n.Items))
|
||
|
set = result
|
||
|
}
|
||
|
case *ast.ObjectType:
|
||
|
// If we're at the root or we're directly within a slice, then we
|
||
|
// decode objects into map[string]interface{}, otherwise we decode
|
||
|
// them into lists.
|
||
|
if len(d.stack) == 0 || d.stack[len(d.stack)-1] == reflect.Slice {
|
||
|
var temp map[string]interface{}
|
||
|
tempVal := reflect.ValueOf(temp)
|
||
|
result := reflect.MakeMap(
|
||
|
reflect.MapOf(
|
||
|
reflect.TypeOf(""),
|
||
|
tempVal.Type().Elem()))
|
||
|
|
||
|
set = result
|
||
|
} else {
|
||
|
var temp []map[string]interface{}
|
||
|
tempVal := reflect.ValueOf(temp)
|
||
|
result := reflect.MakeSlice(
|
||
|
reflect.SliceOf(tempVal.Type().Elem()), 0, 1)
|
||
|
set = result
|
||
|
}
|
||
|
case *ast.ListType:
|
||
|
var temp []interface{}
|
||
|
tempVal := reflect.ValueOf(temp)
|
||
|
result := reflect.MakeSlice(
|
||
|
reflect.SliceOf(tempVal.Type().Elem()), 0, 0)
|
||
|
set = result
|
||
|
case *ast.LiteralType:
|
||
|
switch n.Token.Type {
|
||
|
case token.BOOL:
|
||
|
var result bool
|
||
|
set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
|
||
|
case token.FLOAT:
|
||
|
var result float64
|
||
|
set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
|
||
|
case token.NUMBER:
|
||
|
var result int
|
||
|
set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
|
||
|
case token.STRING, token.HEREDOC:
|
||
|
set = reflect.Indirect(reflect.New(reflect.TypeOf("")))
|
||
|
default:
|
||
|
return &parser.PosError{
|
||
|
Pos: node.Pos(),
|
||
|
Err: fmt.Errorf("%s: cannot decode into interface: %T", name, node),
|
||
|
}
|
||
|
}
|
||
|
default:
|
||
|
return fmt.Errorf(
|
||
|
"%s: cannot decode into interface: %T",
|
||
|
name, node)
|
||
|
}
|
||
|
|
||
|
// Set the result to what its supposed to be, then reset
|
||
|
// result so we don't reflect into this method anymore.
|
||
|
result.Set(set)
|
||
|
|
||
|
if redecode {
|
||
|
// Revisit the node so that we can use the newly instantiated
|
||
|
// thing and populate it.
|
||
|
if err := d.decode(name, node, result); err != nil {
|
||
|
return err
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func (d *decoder) decodeMap(name string, node ast.Node, result reflect.Value) error {
|
||
|
if item, ok := node.(*ast.ObjectItem); ok {
|
||
|
node = &ast.ObjectList{Items: []*ast.ObjectItem{item}}
|
||
|
}
|
||
|
|
||
|
if ot, ok := node.(*ast.ObjectType); ok {
|
||
|
node = ot.List
|
||
|
}
|
||
|
|
||
|
n, ok := node.(*ast.ObjectList)
|
||
|
if !ok {
|
||
|
return &parser.PosError{
|
||
|
Pos: node.Pos(),
|
||
|
Err: fmt.Errorf("%s: not an object type for map (%T)", name, node),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If we have an interface, then we can address the interface,
|
||
|
// but not the slice itself, so get the element but set the interface
|
||
|
set := result
|
||
|
if result.Kind() == reflect.Interface {
|
||
|
result = result.Elem()
|
||
|
}
|
||
|
|
||
|
resultType := result.Type()
|
||
|
resultElemType := resultType.Elem()
|
||
|
resultKeyType := resultType.Key()
|
||
|
if resultKeyType.Kind() != reflect.String {
|
||
|
return &parser.PosError{
|
||
|
Pos: node.Pos(),
|
||
|
Err: fmt.Errorf("%s: map must have string keys", name),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Make a map if it is nil
|
||
|
resultMap := result
|
||
|
if result.IsNil() {
|
||
|
resultMap = reflect.MakeMap(
|
||
|
reflect.MapOf(resultKeyType, resultElemType))
|
||
|
}
|
||
|
|
||
|
// Go through each element and decode it.
|
||
|
done := make(map[string]struct{})
|
||
|
for _, item := range n.Items {
|
||
|
if item.Val == nil {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
// github.com/hashicorp/terraform/issue/5740
|
||
|
if len(item.Keys) == 0 {
|
||
|
return &parser.PosError{
|
||
|
Pos: node.Pos(),
|
||
|
Err: fmt.Errorf("%s: map must have string keys", name),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Get the key we're dealing with, which is the first item
|
||
|
keyStr := item.Keys[0].Token.Value().(string)
|
||
|
|
||
|
// If we've already processed this key, then ignore it
|
||
|
if _, ok := done[keyStr]; ok {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
// Determine the value. If we have more than one key, then we
|
||
|
// get the objectlist of only these keys.
|
||
|
itemVal := item.Val
|
||
|
if len(item.Keys) > 1 {
|
||
|
itemVal = n.Filter(keyStr)
|
||
|
done[keyStr] = struct{}{}
|
||
|
}
|
||
|
|
||
|
// Make the field name
|
||
|
fieldName := fmt.Sprintf("%s.%s", name, keyStr)
|
||
|
|
||
|
// Get the key/value as reflection values
|
||
|
key := reflect.ValueOf(keyStr)
|
||
|
val := reflect.Indirect(reflect.New(resultElemType))
|
||
|
|
||
|
// If we have a pre-existing value in the map, use that
|
||
|
oldVal := resultMap.MapIndex(key)
|
||
|
if oldVal.IsValid() {
|
||
|
val.Set(oldVal)
|
||
|
}
|
||
|
|
||
|
// Decode!
|
||
|
if err := d.decode(fieldName, itemVal, val); err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
// Set the value on the map
|
||
|
resultMap.SetMapIndex(key, val)
|
||
|
}
|
||
|
|
||
|
// Set the final map if we can
|
||
|
set.Set(resultMap)
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func (d *decoder) decodePtr(name string, node ast.Node, result reflect.Value) error {
|
||
|
// Create an element of the concrete (non pointer) type and decode
|
||
|
// into that. Then set the value of the pointer to this type.
|
||
|
resultType := result.Type()
|
||
|
resultElemType := resultType.Elem()
|
||
|
val := reflect.New(resultElemType)
|
||
|
if err := d.decode(name, node, reflect.Indirect(val)); err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
result.Set(val)
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func (d *decoder) decodeSlice(name string, node ast.Node, result reflect.Value) error {
|
||
|
// If we have an interface, then we can address the interface,
|
||
|
// but not the slice itself, so get the element but set the interface
|
||
|
set := result
|
||
|
if result.Kind() == reflect.Interface {
|
||
|
result = result.Elem()
|
||
|
}
|
||
|
// Create the slice if it isn't nil
|
||
|
resultType := result.Type()
|
||
|
resultElemType := resultType.Elem()
|
||
|
if result.IsNil() {
|
||
|
resultSliceType := reflect.SliceOf(resultElemType)
|
||
|
result = reflect.MakeSlice(
|
||
|
resultSliceType, 0, 0)
|
||
|
}
|
||
|
|
||
|
// Figure out the items we'll be copying into the slice
|
||
|
var items []ast.Node
|
||
|
switch n := node.(type) {
|
||
|
case *ast.ObjectList:
|
||
|
items = make([]ast.Node, len(n.Items))
|
||
|
for i, item := range n.Items {
|
||
|
items[i] = item
|
||
|
}
|
||
|
case *ast.ObjectType:
|
||
|
items = []ast.Node{n}
|
||
|
case *ast.ListType:
|
||
|
items = n.List
|
||
|
default:
|
||
|
return &parser.PosError{
|
||
|
Pos: node.Pos(),
|
||
|
Err: fmt.Errorf("unknown slice type: %T", node),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for i, item := range items {
|
||
|
fieldName := fmt.Sprintf("%s[%d]", name, i)
|
||
|
|
||
|
// Decode
|
||
|
val := reflect.Indirect(reflect.New(resultElemType))
|
||
|
|
||
|
// if item is an object that was decoded from ambiguous JSON and
|
||
|
// flattened, make sure it's expanded if it needs to decode into a
|
||
|
// defined structure.
|
||
|
item := expandObject(item, val)
|
||
|
|
||
|
if err := d.decode(fieldName, item, val); err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
// Append it onto the slice
|
||
|
result = reflect.Append(result, val)
|
||
|
}
|
||
|
|
||
|
set.Set(result)
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// expandObject detects if an ambiguous JSON object was flattened to a List which
|
||
|
// should be decoded into a struct, and expands the ast to properly deocode.
|
||
|
func expandObject(node ast.Node, result reflect.Value) ast.Node {
|
||
|
item, ok := node.(*ast.ObjectItem)
|
||
|
if !ok {
|
||
|
return node
|
||
|
}
|
||
|
|
||
|
elemType := result.Type()
|
||
|
|
||
|
// our target type must be a struct
|
||
|
switch elemType.Kind() {
|
||
|
case reflect.Ptr:
|
||
|
switch elemType.Elem().Kind() {
|
||
|
case reflect.Struct:
|
||
|
//OK
|
||
|
default:
|
||
|
return node
|
||
|
}
|
||
|
case reflect.Struct:
|
||
|
//OK
|
||
|
default:
|
||
|
return node
|
||
|
}
|
||
|
|
||
|
// A list value will have a key and field name. If it had more fields,
|
||
|
// it wouldn't have been flattened.
|
||
|
if len(item.Keys) != 2 {
|
||
|
return node
|
||
|
}
|
||
|
|
||
|
keyToken := item.Keys[0].Token
|
||
|
item.Keys = item.Keys[1:]
|
||
|
|
||
|
// we need to un-flatten the ast enough to decode
|
||
|
newNode := &ast.ObjectItem{
|
||
|
Keys: []*ast.ObjectKey{
|
||
|
&ast.ObjectKey{
|
||
|
Token: keyToken,
|
||
|
},
|
||
|
},
|
||
|
Val: &ast.ObjectType{
|
||
|
List: &ast.ObjectList{
|
||
|
Items: []*ast.ObjectItem{item},
|
||
|
},
|
||
|
},
|
||
|
}
|
||
|
|
||
|
return newNode
|
||
|
}
|
||
|
|
||
|
func (d *decoder) decodeString(name string, node ast.Node, result reflect.Value) error {
|
||
|
switch n := node.(type) {
|
||
|
case *ast.LiteralType:
|
||
|
switch n.Token.Type {
|
||
|
case token.NUMBER:
|
||
|
result.Set(reflect.ValueOf(n.Token.Text).Convert(result.Type()))
|
||
|
return nil
|
||
|
case token.STRING, token.HEREDOC:
|
||
|
result.Set(reflect.ValueOf(n.Token.Value()).Convert(result.Type()))
|
||
|
return nil
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return &parser.PosError{
|
||
|
Pos: node.Pos(),
|
||
|
Err: fmt.Errorf("%s: unknown type for string %T", name, node),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (d *decoder) decodeStruct(name string, node ast.Node, result reflect.Value) error {
|
||
|
var item *ast.ObjectItem
|
||
|
if it, ok := node.(*ast.ObjectItem); ok {
|
||
|
item = it
|
||
|
node = it.Val
|
||
|
}
|
||
|
|
||
|
if ot, ok := node.(*ast.ObjectType); ok {
|
||
|
node = ot.List
|
||
|
}
|
||
|
|
||
|
// Handle the special case where the object itself is a literal. Previously
|
||
|
// the yacc parser would always ensure top-level elements were arrays. The new
|
||
|
// parser does not make the same guarantees, thus we need to convert any
|
||
|
// top-level literal elements into a list.
|
||
|
if _, ok := node.(*ast.LiteralType); ok && item != nil {
|
||
|
node = &ast.ObjectList{Items: []*ast.ObjectItem{item}}
|
||
|
}
|
||
|
|
||
|
list, ok := node.(*ast.ObjectList)
|
||
|
if !ok {
|
||
|
return &parser.PosError{
|
||
|
Pos: node.Pos(),
|
||
|
Err: fmt.Errorf("%s: not an object type for struct (%T)", name, node),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// This slice will keep track of all the structs we'll be decoding.
|
||
|
// There can be more than one struct if there are embedded structs
|
||
|
// that are squashed.
|
||
|
structs := make([]reflect.Value, 1, 5)
|
||
|
structs[0] = result
|
||
|
|
||
|
// Compile the list of all the fields that we're going to be decoding
|
||
|
// from all the structs.
|
||
|
type field struct {
|
||
|
field reflect.StructField
|
||
|
val reflect.Value
|
||
|
}
|
||
|
fields := []field{}
|
||
|
for len(structs) > 0 {
|
||
|
structVal := structs[0]
|
||
|
structs = structs[1:]
|
||
|
|
||
|
structType := structVal.Type()
|
||
|
for i := 0; i < structType.NumField(); i++ {
|
||
|
fieldType := structType.Field(i)
|
||
|
tagParts := strings.Split(fieldType.Tag.Get(tagName), ",")
|
||
|
|
||
|
// Ignore fields with tag name "-"
|
||
|
if tagParts[0] == "-" {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
if fieldType.Anonymous {
|
||
|
fieldKind := fieldType.Type.Kind()
|
||
|
if fieldKind != reflect.Struct {
|
||
|
return &parser.PosError{
|
||
|
Pos: node.Pos(),
|
||
|
Err: fmt.Errorf("%s: unsupported type to struct: %s",
|
||
|
fieldType.Name, fieldKind),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// We have an embedded field. We "squash" the fields down
|
||
|
// if specified in the tag.
|
||
|
squash := false
|
||
|
for _, tag := range tagParts[1:] {
|
||
|
if tag == "squash" {
|
||
|
squash = true
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if squash {
|
||
|
structs = append(
|
||
|
structs, result.FieldByName(fieldType.Name))
|
||
|
continue
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Normal struct field, store it away
|
||
|
fields = append(fields, field{fieldType, structVal.Field(i)})
|
||
|
}
|
||
|
}
|
||
|
|
||
|
usedKeys := make(map[string]struct{})
|
||
|
decodedFields := make([]string, 0, len(fields))
|
||
|
decodedFieldsVal := make([]reflect.Value, 0)
|
||
|
unusedKeysVal := make([]reflect.Value, 0)
|
||
|
for _, f := range fields {
|
||
|
field, fieldValue := f.field, f.val
|
||
|
if !fieldValue.IsValid() {
|
||
|
// This should never happen
|
||
|
panic("field is not valid")
|
||
|
}
|
||
|
|
||
|
// If we can't set the field, then it is unexported or something,
|
||
|
// and we just continue onwards.
|
||
|
if !fieldValue.CanSet() {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
fieldName := field.Name
|
||
|
|
||
|
tagValue := field.Tag.Get(tagName)
|
||
|
tagParts := strings.SplitN(tagValue, ",", 2)
|
||
|
if len(tagParts) >= 2 {
|
||
|
switch tagParts[1] {
|
||
|
case "decodedFields":
|
||
|
decodedFieldsVal = append(decodedFieldsVal, fieldValue)
|
||
|
continue
|
||
|
case "key":
|
||
|
if item == nil {
|
||
|
return &parser.PosError{
|
||
|
Pos: node.Pos(),
|
||
|
Err: fmt.Errorf("%s: %s asked for 'key', impossible",
|
||
|
name, fieldName),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
fieldValue.SetString(item.Keys[0].Token.Value().(string))
|
||
|
continue
|
||
|
case "unusedKeys":
|
||
|
unusedKeysVal = append(unusedKeysVal, fieldValue)
|
||
|
continue
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if tagParts[0] != "" {
|
||
|
fieldName = tagParts[0]
|
||
|
}
|
||
|
|
||
|
// Determine the element we'll use to decode. If it is a single
|
||
|
// match (only object with the field), then we decode it exactly.
|
||
|
// If it is a prefix match, then we decode the matches.
|
||
|
filter := list.Filter(fieldName)
|
||
|
|
||
|
prefixMatches := filter.Children()
|
||
|
matches := filter.Elem()
|
||
|
if len(matches.Items) == 0 && len(prefixMatches.Items) == 0 {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
// Track the used key
|
||
|
usedKeys[fieldName] = struct{}{}
|
||
|
|
||
|
// Create the field name and decode. We range over the elements
|
||
|
// because we actually want the value.
|
||
|
fieldName = fmt.Sprintf("%s.%s", name, fieldName)
|
||
|
if len(prefixMatches.Items) > 0 {
|
||
|
if err := d.decode(fieldName, prefixMatches, fieldValue); err != nil {
|
||
|
return err
|
||
|
}
|
||
|
}
|
||
|
for _, match := range matches.Items {
|
||
|
var decodeNode ast.Node = match.Val
|
||
|
if ot, ok := decodeNode.(*ast.ObjectType); ok {
|
||
|
decodeNode = &ast.ObjectList{Items: ot.List.Items}
|
||
|
}
|
||
|
|
||
|
if err := d.decode(fieldName, decodeNode, fieldValue); err != nil {
|
||
|
return err
|
||
|
}
|
||
|
}
|
||
|
|
||
|
decodedFields = append(decodedFields, field.Name)
|
||
|
}
|
||
|
|
||
|
if len(decodedFieldsVal) > 0 {
|
||
|
// Sort it so that it is deterministic
|
||
|
sort.Strings(decodedFields)
|
||
|
|
||
|
for _, v := range decodedFieldsVal {
|
||
|
v.Set(reflect.ValueOf(decodedFields))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// findNodeType returns the type of ast.Node
|
||
|
func findNodeType() reflect.Type {
|
||
|
var nodeContainer struct {
|
||
|
Node ast.Node
|
||
|
}
|
||
|
value := reflect.ValueOf(nodeContainer).FieldByName("Node")
|
||
|
return value.Type()
|
||
|
}
|