1
1
mirror of https://github.com/go-gitea/gitea synced 2024-12-30 20:44:27 +00:00
gitea/vendor/github.com/dsnet/compress/bzip2/bwt.go

111 lines
3.1 KiB
Go
Raw Normal View History

// Copyright 2015, Joe Tsai. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package bzip2
import "github.com/dsnet/compress/bzip2/internal/sais"
// The Burrows-Wheeler Transform implementation used here is based on the
// Suffix Array by Induced Sorting (SA-IS) methodology by Nong, Zhang, and Chan.
// This implementation uses the sais algorithm originally written by Yuta Mori.
//
// The SA-IS algorithm runs in O(n) and outputs a Suffix Array. There is a
// mathematical relationship between Suffix Arrays and the Burrows-Wheeler
// Transform, such that a SA can be converted to a BWT in O(n) time.
//
// References:
// http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
// https://github.com/cscott/compressjs/blob/master/lib/BWT.js
// https://www.quora.com/How-can-I-optimize-burrows-wheeler-transform-and-inverse-transform-to-work-in-O-n-time-O-n-space
type burrowsWheelerTransform struct {
buf []byte
sa []int
perm []uint32
}
func (bwt *burrowsWheelerTransform) Encode(buf []byte) (ptr int) {
if len(buf) == 0 {
return -1
}
// TODO(dsnet): Find a way to avoid the duplicate input string method.
// We only need to do this because suffix arrays (by definition) only
// operate non-wrapped suffixes of a string. On the other hand,
// the BWT specifically used in bzip2 operate on a strings that wrap-around
// when being sorted.
// Step 1: Concatenate the input string to itself so that we can use the
// suffix array algorithm for bzip2's variant of BWT.
n := len(buf)
bwt.buf = append(append(bwt.buf[:0], buf...), buf...)
if cap(bwt.sa) < 2*n {
bwt.sa = make([]int, 2*n)
}
t := bwt.buf[:2*n]
sa := bwt.sa[:2*n]
// Step 2: Compute the suffix array (SA). The input string, t, will not be
// modified, while the results will be written to the output, sa.
sais.ComputeSA(t, sa)
// Step 3: Convert the SA to a BWT. Since ComputeSA does not mutate the
// input, we have two copies of the input; in buf and buf2. Thus, we write
// the transformation to buf, while using buf2.
var j int
buf2 := t[n:]
for _, i := range sa {
if i < n {
if i == 0 {
ptr = j
i = n
}
buf[j] = buf2[i-1]
j++
}
}
return ptr
}
func (bwt *burrowsWheelerTransform) Decode(buf []byte, ptr int) {
if len(buf) == 0 {
return
}
// Step 1: Compute cumm, where cumm[ch] reports the total number of
// characters that precede the character ch in the alphabet.
var cumm [256]int
for _, v := range buf {
cumm[v]++
}
var sum int
for i, v := range cumm {
cumm[i] = sum
sum += v
}
// Step 2: Compute perm, where perm[ptr] contains a pointer to the next
// byte in buf and the next pointer in perm itself.
if cap(bwt.perm) < len(buf) {
bwt.perm = make([]uint32, len(buf))
}
perm := bwt.perm[:len(buf)]
for i, b := range buf {
perm[cumm[b]] = uint32(i)
cumm[b]++
}
// Step 3: Follow each pointer in perm to the next byte, starting with the
// origin pointer.
if cap(bwt.buf) < len(buf) {
bwt.buf = make([]byte, len(buf))
}
buf2 := bwt.buf[:len(buf)]
i := perm[ptr]
for j := range buf2 {
buf2[j] = buf[i]
i = perm[i]
}
copy(buf, buf2)
}