1
1
mirror of https://github.com/go-gitea/gitea synced 2024-12-30 20:44:27 +00:00
gitea/vendor/golang.org/x/net/idna/punycode.go

204 lines
4.3 KiB
Go
Raw Normal View History

// Code generated by running "go generate" in golang.org/x/text. DO NOT EDIT.
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package idna
// This file implements the Punycode algorithm from RFC 3492.
import (
"math"
"strings"
"unicode/utf8"
)
// These parameter values are specified in section 5.
//
// All computation is done with int32s, so that overflow behavior is identical
// regardless of whether int is 32-bit or 64-bit.
const (
base int32 = 36
damp int32 = 700
initialBias int32 = 72
initialN int32 = 128
skew int32 = 38
tmax int32 = 26
tmin int32 = 1
)
func punyError(s string) error { return &labelError{s, "A3"} }
// decode decodes a string as specified in section 6.2.
func decode(encoded string) (string, error) {
if encoded == "" {
return "", nil
}
pos := 1 + strings.LastIndex(encoded, "-")
if pos == 1 {
return "", punyError(encoded)
}
if pos == len(encoded) {
return encoded[:len(encoded)-1], nil
}
output := make([]rune, 0, len(encoded))
if pos != 0 {
for _, r := range encoded[:pos-1] {
output = append(output, r)
}
}
i, n, bias := int32(0), initialN, initialBias
for pos < len(encoded) {
oldI, w := i, int32(1)
for k := base; ; k += base {
if pos == len(encoded) {
return "", punyError(encoded)
}
digit, ok := decodeDigit(encoded[pos])
if !ok {
return "", punyError(encoded)
}
pos++
i += digit * w
if i < 0 {
return "", punyError(encoded)
}
t := k - bias
if t < tmin {
t = tmin
} else if t > tmax {
t = tmax
}
if digit < t {
break
}
w *= base - t
if w >= math.MaxInt32/base {
return "", punyError(encoded)
}
}
x := int32(len(output) + 1)
bias = adapt(i-oldI, x, oldI == 0)
n += i / x
i %= x
if n > utf8.MaxRune || len(output) >= 1024 {
return "", punyError(encoded)
}
output = append(output, 0)
copy(output[i+1:], output[i:])
output[i] = n
i++
}
return string(output), nil
}
// encode encodes a string as specified in section 6.3 and prepends prefix to
// the result.
//
// The "while h < length(input)" line in the specification becomes "for
// remaining != 0" in the Go code, because len(s) in Go is in bytes, not runes.
func encode(prefix, s string) (string, error) {
output := make([]byte, len(prefix), len(prefix)+1+2*len(s))
copy(output, prefix)
delta, n, bias := int32(0), initialN, initialBias
b, remaining := int32(0), int32(0)
for _, r := range s {
if r < 0x80 {
b++
output = append(output, byte(r))
} else {
remaining++
}
}
h := b
if b > 0 {
output = append(output, '-')
}
for remaining != 0 {
m := int32(0x7fffffff)
for _, r := range s {
if m > r && r >= n {
m = r
}
}
delta += (m - n) * (h + 1)
if delta < 0 {
return "", punyError(s)
}
n = m
for _, r := range s {
if r < n {
delta++
if delta < 0 {
return "", punyError(s)
}
continue
}
if r > n {
continue
}
q := delta
for k := base; ; k += base {
t := k - bias
if t < tmin {
t = tmin
} else if t > tmax {
t = tmax
}
if q < t {
break
}
output = append(output, encodeDigit(t+(q-t)%(base-t)))
q = (q - t) / (base - t)
}
output = append(output, encodeDigit(q))
bias = adapt(delta, h+1, h == b)
delta = 0
h++
remaining--
}
delta++
n++
}
return string(output), nil
}
func decodeDigit(x byte) (digit int32, ok bool) {
switch {
case '0' <= x && x <= '9':
return int32(x - ('0' - 26)), true
case 'A' <= x && x <= 'Z':
return int32(x - 'A'), true
case 'a' <= x && x <= 'z':
return int32(x - 'a'), true
}
return 0, false
}
func encodeDigit(digit int32) byte {
switch {
case 0 <= digit && digit < 26:
return byte(digit + 'a')
case 26 <= digit && digit < 36:
return byte(digit + ('0' - 26))
}
panic("idna: internal error in punycode encoding")
}
// adapt is the bias adaptation function specified in section 6.1.
func adapt(delta, numPoints int32, firstTime bool) int32 {
if firstTime {
delta /= damp
} else {
delta /= 2
}
delta += delta / numPoints
k := int32(0)
for delta > ((base-tmin)*tmax)/2 {
delta /= base - tmin
k += base
}
return k + (base-tmin+1)*delta/(delta+skew)
}