-`Lanczos2`: [Lanczos resampling](http://en.wikipedia.org/wiki/Lanczos_resampling) with a=2
-`Lanczos3`: [Lanczos resampling](http://en.wikipedia.org/wiki/Lanczos_resampling) with a=3
Which of these methods gives the best results depends on your use case.
Sample usage:
```go
package main
import (
"github.com/nfnt/resize"
"image/jpeg"
"log"
"os"
)
func main() {
// open "test.jpg"
file, err := os.Open("test.jpg")
if err != nil {
log.Fatal(err)
}
// decode jpeg into image.Image
img, err := jpeg.Decode(file)
if err != nil {
log.Fatal(err)
}
file.Close()
// resize to width 1000 using Lanczos resampling
// and preserve aspect ratio
m := resize.Resize(1000, 0, img, resize.Lanczos3)
out, err := os.Create("test_resized.jpg")
if err != nil {
log.Fatal(err)
}
defer out.Close()
// write new image to file
jpeg.Encode(out, m, nil)
}
```
Caveats
-------
* Optimized access routines are used for `image.RGBA`, `image.NRGBA`, `image.RGBA64`, `image.NRGBA64`, `image.YCbCr`, `image.Gray`, and `image.Gray16` types. All other image types are accessed in a generic way that will result in slow processing speed.
* JPEG images are stored in `image.YCbCr`. This image format stores data in a way that will decrease processing speed. A resize may be up to 2 times slower than with `image.RGBA`.
Downsizing Samples
-------
Downsizing is not as simple as it might look like. Images have to be filtered before they are scaled down, otherwise aliasing might occur.
Filtering is highly subjective: Applying too much will blur the whole image, too little will make aliasing become apparent.
Resize tries to provide sane defaults that should suffice in most cases.