1
1
mirror of https://github.com/go-gitea/gitea synced 2024-11-14 14:14:25 +00:00
gitea/vendor/golang.org/x/text/language/maketables.go

1700 lines
48 KiB
Go
Raw Normal View History

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
// Language tag table generator.
// Data read from the web.
package main
import (
"bufio"
"flag"
"fmt"
"io"
"io/ioutil"
"log"
"math"
"reflect"
"regexp"
"sort"
"strconv"
"strings"
"golang.org/x/text/internal/gen"
"golang.org/x/text/internal/tag"
"golang.org/x/text/unicode/cldr"
)
var (
test = flag.Bool("test",
false,
"test existing tables; can be used to compare web data with package data.")
outputFile = flag.String("output",
"tables.go",
"output file for generated tables")
)
var comment = []string{
`
lang holds an alphabetically sorted list of ISO-639 language identifiers.
All entries are 4 bytes. The index of the identifier (divided by 4) is the language tag.
For 2-byte language identifiers, the two successive bytes have the following meaning:
- if the first letter of the 2- and 3-letter ISO codes are the same:
the second and third letter of the 3-letter ISO code.
- otherwise: a 0 and a by 2 bits right-shifted index into altLangISO3.
For 3-byte language identifiers the 4th byte is 0.`,
`
langNoIndex is a bit vector of all 3-letter language codes that are not used as an index
in lookup tables. The language ids for these language codes are derived directly
from the letters and are not consecutive.`,
`
altLangISO3 holds an alphabetically sorted list of 3-letter language code alternatives
to 2-letter language codes that cannot be derived using the method described above.
Each 3-letter code is followed by its 1-byte langID.`,
`
altLangIndex is used to convert indexes in altLangISO3 to langIDs.`,
`
langAliasMap maps langIDs to their suggested replacements.`,
`
script is an alphabetically sorted list of ISO 15924 codes. The index
of the script in the string, divided by 4, is the internal scriptID.`,
`
isoRegionOffset needs to be added to the index of regionISO to obtain the regionID
for 2-letter ISO codes. (The first isoRegionOffset regionIDs are reserved for
the UN.M49 codes used for groups.)`,
`
regionISO holds a list of alphabetically sorted 2-letter ISO region codes.
Each 2-letter codes is followed by two bytes with the following meaning:
- [A-Z}{2}: the first letter of the 2-letter code plus these two
letters form the 3-letter ISO code.
- 0, n: index into altRegionISO3.`,
`
regionTypes defines the status of a region for various standards.`,
`
m49 maps regionIDs to UN.M49 codes. The first isoRegionOffset entries are
codes indicating collections of regions.`,
`
m49Index gives indexes into fromM49 based on the three most significant bits
of a 10-bit UN.M49 code. To search an UN.M49 code in fromM49, search in
fromM49[m49Index[msb39(code)]:m49Index[msb3(code)+1]]
for an entry where the first 7 bits match the 7 lsb of the UN.M49 code.
The region code is stored in the 9 lsb of the indexed value.`,
`
fromM49 contains entries to map UN.M49 codes to regions. See m49Index for details.`,
`
altRegionISO3 holds a list of 3-letter region codes that cannot be
mapped to 2-letter codes using the default algorithm. This is a short list.`,
`
altRegionIDs holds a list of regionIDs the positions of which match those
of the 3-letter ISO codes in altRegionISO3.`,
`
variantNumSpecialized is the number of specialized variants in variants.`,
`
suppressScript is an index from langID to the dominant script for that language,
if it exists. If a script is given, it should be suppressed from the language tag.`,
`
likelyLang is a lookup table, indexed by langID, for the most likely
scripts and regions given incomplete information. If more entries exist for a
given language, region and script are the index and size respectively
of the list in likelyLangList.`,
`
likelyLangList holds lists info associated with likelyLang.`,
`
likelyRegion is a lookup table, indexed by regionID, for the most likely
languages and scripts given incomplete information. If more entries exist
for a given regionID, lang and script are the index and size respectively
of the list in likelyRegionList.
TODO: exclude containers and user-definable regions from the list.`,
`
likelyRegionList holds lists info associated with likelyRegion.`,
`
likelyScript is a lookup table, indexed by scriptID, for the most likely
languages and regions given a script.`,
`
matchLang holds pairs of langIDs of base languages that are typically
mutually intelligible. Each pair is associated with a confidence and
whether the intelligibility goes one or both ways.`,
`
matchScript holds pairs of scriptIDs where readers of one script
can typically also read the other. Each is associated with a confidence.`,
`
nRegionGroups is the number of region groups.`,
`
regionInclusion maps region identifiers to sets of regions in regionInclusionBits,
where each set holds all groupings that are directly connected in a region
containment graph.`,
`
regionInclusionBits is an array of bit vectors where every vector represents
a set of region groupings. These sets are used to compute the distance
between two regions for the purpose of language matching.`,
`
regionInclusionNext marks, for each entry in regionInclusionBits, the set of
all groups that are reachable from the groups set in the respective entry.`,
}
// TODO: consider changing some of these structures to tries. This can reduce
// memory, but may increase the need for memory allocations. This could be
// mitigated if we can piggyback on language tags for common cases.
func failOnError(e error) {
if e != nil {
log.Panic(e)
}
}
type setType int
const (
Indexed setType = 1 + iota // all elements must be of same size
Linear
)
type stringSet struct {
s []string
sorted, frozen bool
// We often need to update values after the creation of an index is completed.
// We include a convenience map for keeping track of this.
update map[string]string
typ setType // used for checking.
}
func (ss *stringSet) clone() stringSet {
c := *ss
c.s = append([]string(nil), c.s...)
return c
}
func (ss *stringSet) setType(t setType) {
if ss.typ != t && ss.typ != 0 {
log.Panicf("type %d cannot be assigned as it was already %d", t, ss.typ)
}
}
// parse parses a whitespace-separated string and initializes ss with its
// components.
func (ss *stringSet) parse(s string) {
scan := bufio.NewScanner(strings.NewReader(s))
scan.Split(bufio.ScanWords)
for scan.Scan() {
ss.add(scan.Text())
}
}
func (ss *stringSet) assertChangeable() {
if ss.frozen {
log.Panic("attempt to modify a frozen stringSet")
}
}
func (ss *stringSet) add(s string) {
ss.assertChangeable()
ss.s = append(ss.s, s)
ss.sorted = ss.frozen
}
func (ss *stringSet) freeze() {
ss.compact()
ss.frozen = true
}
func (ss *stringSet) compact() {
if ss.sorted {
return
}
a := ss.s
sort.Strings(a)
k := 0
for i := 1; i < len(a); i++ {
if a[k] != a[i] {
a[k+1] = a[i]
k++
}
}
ss.s = a[:k+1]
ss.sorted = ss.frozen
}
type funcSorter struct {
fn func(a, b string) bool
sort.StringSlice
}
func (s funcSorter) Less(i, j int) bool {
return s.fn(s.StringSlice[i], s.StringSlice[j])
}
func (ss *stringSet) sortFunc(f func(a, b string) bool) {
ss.compact()
sort.Sort(funcSorter{f, sort.StringSlice(ss.s)})
}
func (ss *stringSet) remove(s string) {
ss.assertChangeable()
if i, ok := ss.find(s); ok {
copy(ss.s[i:], ss.s[i+1:])
ss.s = ss.s[:len(ss.s)-1]
}
}
func (ss *stringSet) replace(ol, nu string) {
ss.s[ss.index(ol)] = nu
ss.sorted = ss.frozen
}
func (ss *stringSet) index(s string) int {
ss.setType(Indexed)
i, ok := ss.find(s)
if !ok {
if i < len(ss.s) {
log.Panicf("find: item %q is not in list. Closest match is %q.", s, ss.s[i])
}
log.Panicf("find: item %q is not in list", s)
}
return i
}
func (ss *stringSet) find(s string) (int, bool) {
ss.compact()
i := sort.SearchStrings(ss.s, s)
return i, i != len(ss.s) && ss.s[i] == s
}
func (ss *stringSet) slice() []string {
ss.compact()
return ss.s
}
func (ss *stringSet) updateLater(v, key string) {
if ss.update == nil {
ss.update = map[string]string{}
}
ss.update[v] = key
}
// join joins the string and ensures that all entries are of the same length.
func (ss *stringSet) join() string {
ss.setType(Indexed)
n := len(ss.s[0])
for _, s := range ss.s {
if len(s) != n {
log.Panicf("join: not all entries are of the same length: %q", s)
}
}
ss.s = append(ss.s, strings.Repeat("\xff", n))
return strings.Join(ss.s, "")
}
// ianaEntry holds information for an entry in the IANA Language Subtag Repository.
// All types use the same entry.
// See http://tools.ietf.org/html/bcp47#section-5.1 for a description of the various
// fields.
type ianaEntry struct {
typ string
description []string
scope string
added string
preferred string
deprecated string
suppressScript string
macro string
prefix []string
}
type builder struct {
w *gen.CodeWriter
hw io.Writer // MultiWriter for w and w.Hash
data *cldr.CLDR
supp *cldr.SupplementalData
// indices
locale stringSet // common locales
lang stringSet // canonical language ids (2 or 3 letter ISO codes) with data
langNoIndex stringSet // 3-letter ISO codes with no associated data
script stringSet // 4-letter ISO codes
region stringSet // 2-letter ISO or 3-digit UN M49 codes
variant stringSet // 4-8-alphanumeric variant code.
// Region codes that are groups with their corresponding group IDs.
groups map[int]index
// langInfo
registry map[string]*ianaEntry
}
type index uint
func newBuilder(w *gen.CodeWriter) *builder {
r := gen.OpenCLDRCoreZip()
defer r.Close()
d := &cldr.Decoder{}
data, err := d.DecodeZip(r)
failOnError(err)
b := builder{
w: w,
hw: io.MultiWriter(w, w.Hash),
data: data,
supp: data.Supplemental(),
}
b.parseRegistry()
return &b
}
func (b *builder) parseRegistry() {
r := gen.OpenIANAFile("assignments/language-subtag-registry")
defer r.Close()
b.registry = make(map[string]*ianaEntry)
scan := bufio.NewScanner(r)
scan.Split(bufio.ScanWords)
var record *ianaEntry
for more := scan.Scan(); more; {
key := scan.Text()
more = scan.Scan()
value := scan.Text()
switch key {
case "Type:":
record = &ianaEntry{typ: value}
case "Subtag:", "Tag:":
if s := strings.SplitN(value, "..", 2); len(s) > 1 {
for a := s[0]; a <= s[1]; a = inc(a) {
b.addToRegistry(a, record)
}
} else {
b.addToRegistry(value, record)
}
case "Suppress-Script:":
record.suppressScript = value
case "Added:":
record.added = value
case "Deprecated:":
record.deprecated = value
case "Macrolanguage:":
record.macro = value
case "Preferred-Value:":
record.preferred = value
case "Prefix:":
record.prefix = append(record.prefix, value)
case "Scope:":
record.scope = value
case "Description:":
buf := []byte(value)
for more = scan.Scan(); more; more = scan.Scan() {
b := scan.Bytes()
if b[0] == '%' || b[len(b)-1] == ':' {
break
}
buf = append(buf, ' ')
buf = append(buf, b...)
}
record.description = append(record.description, string(buf))
continue
default:
continue
}
more = scan.Scan()
}
if scan.Err() != nil {
log.Panic(scan.Err())
}
}
func (b *builder) addToRegistry(key string, entry *ianaEntry) {
if info, ok := b.registry[key]; ok {
if info.typ != "language" || entry.typ != "extlang" {
log.Fatalf("parseRegistry: tag %q already exists", key)
}
} else {
b.registry[key] = entry
}
}
var commentIndex = make(map[string]string)
func init() {
for _, s := range comment {
key := strings.TrimSpace(strings.SplitN(s, " ", 2)[0])
commentIndex[key] = s
}
}
func (b *builder) comment(name string) {
if s := commentIndex[name]; len(s) > 0 {
b.w.WriteComment(s)
} else {
fmt.Fprintln(b.w)
}
}
func (b *builder) pf(f string, x ...interface{}) {
fmt.Fprintf(b.hw, f, x...)
fmt.Fprint(b.hw, "\n")
}
func (b *builder) p(x ...interface{}) {
fmt.Fprintln(b.hw, x...)
}
func (b *builder) addSize(s int) {
b.w.Size += s
b.pf("// Size: %d bytes", s)
}
func (b *builder) writeConst(name string, x interface{}) {
b.comment(name)
b.w.WriteConst(name, x)
}
// writeConsts computes f(v) for all v in values and writes the results
// as constants named _v to a single constant block.
func (b *builder) writeConsts(f func(string) int, values ...string) {
b.pf("const (")
for _, v := range values {
b.pf("\t_%s = %v", v, f(v))
}
b.pf(")")
}
// writeType writes the type of the given value, which must be a struct.
func (b *builder) writeType(value interface{}) {
b.comment(reflect.TypeOf(value).Name())
b.w.WriteType(value)
}
func (b *builder) writeSlice(name string, ss interface{}) {
b.writeSliceAddSize(name, 0, ss)
}
func (b *builder) writeSliceAddSize(name string, extraSize int, ss interface{}) {
b.comment(name)
b.w.Size += extraSize
v := reflect.ValueOf(ss)
t := v.Type().Elem()
b.pf("// Size: %d bytes, %d elements", v.Len()*int(t.Size())+extraSize, v.Len())
fmt.Fprintf(b.w, "var %s = ", name)
b.w.WriteArray(ss)
b.p()
}
type fromTo struct {
from, to uint16
}
func (b *builder) writeSortedMap(name string, ss *stringSet, index func(s string) uint16) {
ss.sortFunc(func(a, b string) bool {
return index(a) < index(b)
})
m := []fromTo{}
for _, s := range ss.s {
m = append(m, fromTo{index(s), index(ss.update[s])})
}
b.writeSlice(name, m)
}
const base = 'z' - 'a' + 1
func strToInt(s string) uint {
v := uint(0)
for i := 0; i < len(s); i++ {
v *= base
v += uint(s[i] - 'a')
}
return v
}
// converts the given integer to the original ASCII string passed to strToInt.
// len(s) must match the number of characters obtained.
func intToStr(v uint, s []byte) {
for i := len(s) - 1; i >= 0; i-- {
s[i] = byte(v%base) + 'a'
v /= base
}
}
func (b *builder) writeBitVector(name string, ss []string) {
vec := make([]uint8, int(math.Ceil(math.Pow(base, float64(len(ss[0])))/8)))
for _, s := range ss {
v := strToInt(s)
vec[v/8] |= 1 << (v % 8)
}
b.writeSlice(name, vec)
}
// TODO: convert this type into a list or two-stage trie.
func (b *builder) writeMapFunc(name string, m map[string]string, f func(string) uint16) {
b.comment(name)
v := reflect.ValueOf(m)
sz := v.Len() * (2 + int(v.Type().Key().Size()))
for _, k := range m {
sz += len(k)
}
b.addSize(sz)
keys := []string{}
b.pf(`var %s = map[string]uint16{`, name)
for k := range m {
keys = append(keys, k)
}
sort.Strings(keys)
for _, k := range keys {
b.pf("\t%q: %v,", k, f(m[k]))
}
b.p("}")
}
func (b *builder) writeMap(name string, m interface{}) {
b.comment(name)
v := reflect.ValueOf(m)
sz := v.Len() * (2 + int(v.Type().Key().Size()) + int(v.Type().Elem().Size()))
b.addSize(sz)
f := strings.FieldsFunc(fmt.Sprintf("%#v", m), func(r rune) bool {
return strings.IndexRune("{}, ", r) != -1
})
sort.Strings(f[1:])
b.pf(`var %s = %s{`, name, f[0])
for _, kv := range f[1:] {
b.pf("\t%s,", kv)
}
b.p("}")
}
func (b *builder) langIndex(s string) uint16 {
if s == "und" {
return 0
}
if i, ok := b.lang.find(s); ok {
return uint16(i)
}
return uint16(strToInt(s)) + uint16(len(b.lang.s))
}
// inc advances the string to its lexicographical successor.
func inc(s string) string {
const maxTagLength = 4
var buf [maxTagLength]byte
intToStr(strToInt(strings.ToLower(s))+1, buf[:len(s)])
for i := 0; i < len(s); i++ {
if s[i] <= 'Z' {
buf[i] -= 'a' - 'A'
}
}
return string(buf[:len(s)])
}
func (b *builder) parseIndices() {
meta := b.supp.Metadata
for k, v := range b.registry {
var ss *stringSet
switch v.typ {
case "language":
if len(k) == 2 || v.suppressScript != "" || v.scope == "special" {
b.lang.add(k)
continue
} else {
ss = &b.langNoIndex
}
case "region":
ss = &b.region
case "script":
ss = &b.script
case "variant":
ss = &b.variant
default:
continue
}
ss.add(k)
}
// Include any language for which there is data.
for _, lang := range b.data.Locales() {
if x := b.data.RawLDML(lang); false ||
x.LocaleDisplayNames != nil ||
x.Characters != nil ||
x.Delimiters != nil ||
x.Measurement != nil ||
x.Dates != nil ||
x.Numbers != nil ||
x.Units != nil ||
x.ListPatterns != nil ||
x.Collations != nil ||
x.Segmentations != nil ||
x.Rbnf != nil ||
x.Annotations != nil ||
x.Metadata != nil {
from := strings.Split(lang, "_")
if lang := from[0]; lang != "root" {
b.lang.add(lang)
}
}
}
// Include locales for plural rules, which uses a different structure.
for _, plurals := range b.data.Supplemental().Plurals {
for _, rules := range plurals.PluralRules {
for _, lang := range strings.Split(rules.Locales, " ") {
if lang = strings.Split(lang, "_")[0]; lang != "root" {
b.lang.add(lang)
}
}
}
}
// Include languages in likely subtags.
for _, m := range b.supp.LikelySubtags.LikelySubtag {
from := strings.Split(m.From, "_")
b.lang.add(from[0])
}
// Include ISO-639 alpha-3 bibliographic entries.
for _, a := range meta.Alias.LanguageAlias {
if a.Reason == "bibliographic" {
b.langNoIndex.add(a.Type)
}
}
// Include regions in territoryAlias (not all are in the IANA registry!)
for _, reg := range b.supp.Metadata.Alias.TerritoryAlias {
if len(reg.Type) == 2 {
b.region.add(reg.Type)
}
}
for _, s := range b.lang.s {
if len(s) == 3 {
b.langNoIndex.remove(s)
}
}
b.writeConst("numLanguages", len(b.lang.slice())+len(b.langNoIndex.slice()))
b.writeConst("numScripts", len(b.script.slice()))
b.writeConst("numRegions", len(b.region.slice()))
// Add dummy codes at the start of each list to represent "unspecified".
b.lang.add("---")
b.script.add("----")
b.region.add("---")
// common locales
b.locale.parse(meta.DefaultContent.Locales)
}
// TODO: region inclusion data will probably not be use used in future matchers.
func (b *builder) computeRegionGroups() {
b.groups = make(map[int]index)
// Create group indices.
for i := 1; b.region.s[i][0] < 'A'; i++ { // Base M49 indices on regionID.
b.groups[i] = index(len(b.groups))
}
for _, g := range b.supp.TerritoryContainment.Group {
// Skip UN and EURO zone as they are flattening the containment
// relationship.
if g.Type == "EZ" || g.Type == "UN" {
continue
}
group := b.region.index(g.Type)
if _, ok := b.groups[group]; !ok {
b.groups[group] = index(len(b.groups))
}
}
if len(b.groups) > 32 {
log.Fatalf("only 32 groups supported, found %d", len(b.groups))
}
b.writeConst("nRegionGroups", len(b.groups))
}
var langConsts = []string{
"af", "am", "ar", "az", "bg", "bn", "ca", "cs", "da", "de", "el", "en", "es",
"et", "fa", "fi", "fil", "fr", "gu", "he", "hi", "hr", "hu", "hy", "id", "is",
"it", "ja", "ka", "kk", "km", "kn", "ko", "ky", "lo", "lt", "lv", "mk", "ml",
"mn", "mo", "mr", "ms", "mul", "my", "nb", "ne", "nl", "no", "pa", "pl", "pt",
"ro", "ru", "sh", "si", "sk", "sl", "sq", "sr", "sv", "sw", "ta", "te", "th",
"tl", "tn", "tr", "uk", "ur", "uz", "vi", "zh", "zu",
// constants for grandfathered tags (if not already defined)
"jbo", "ami", "bnn", "hak", "tlh", "lb", "nv", "pwn", "tao", "tay", "tsu",
"nn", "sfb", "vgt", "sgg", "cmn", "nan", "hsn",
}
// writeLanguage generates all tables needed for language canonicalization.
func (b *builder) writeLanguage() {
meta := b.supp.Metadata
b.writeConst("nonCanonicalUnd", b.lang.index("und"))
b.writeConsts(func(s string) int { return int(b.langIndex(s)) }, langConsts...)
b.writeConst("langPrivateStart", b.langIndex("qaa"))
b.writeConst("langPrivateEnd", b.langIndex("qtz"))
// Get language codes that need to be mapped (overlong 3-letter codes,
// deprecated 2-letter codes, legacy and grandfathered tags.)
langAliasMap := stringSet{}
aliasTypeMap := map[string]langAliasType{}
// altLangISO3 get the alternative ISO3 names that need to be mapped.
altLangISO3 := stringSet{}
// Add dummy start to avoid the use of index 0.
altLangISO3.add("---")
altLangISO3.updateLater("---", "aa")
lang := b.lang.clone()
for _, a := range meta.Alias.LanguageAlias {
if a.Replacement == "" {
a.Replacement = "und"
}
// TODO: support mapping to tags
repl := strings.SplitN(a.Replacement, "_", 2)[0]
if a.Reason == "overlong" {
if len(a.Replacement) == 2 && len(a.Type) == 3 {
lang.updateLater(a.Replacement, a.Type)
}
} else if len(a.Type) <= 3 {
switch a.Reason {
case "macrolanguage":
aliasTypeMap[a.Type] = langMacro
case "deprecated":
// handled elsewhere
continue
case "bibliographic", "legacy":
if a.Type == "no" {
continue
}
aliasTypeMap[a.Type] = langLegacy
default:
log.Fatalf("new %s alias: %s", a.Reason, a.Type)
}
langAliasMap.add(a.Type)
langAliasMap.updateLater(a.Type, repl)
}
}
// Manually add the mapping of "nb" (Norwegian) to its macro language.
// This can be removed if CLDR adopts this change.
langAliasMap.add("nb")
langAliasMap.updateLater("nb", "no")
aliasTypeMap["nb"] = langMacro
for k, v := range b.registry {
// Also add deprecated values for 3-letter ISO codes, which CLDR omits.
if v.typ == "language" && v.deprecated != "" && v.preferred != "" {
langAliasMap.add(k)
langAliasMap.updateLater(k, v.preferred)
aliasTypeMap[k] = langDeprecated
}
}
// Fix CLDR mappings.
lang.updateLater("tl", "tgl")
lang.updateLater("sh", "hbs")
lang.updateLater("mo", "mol")
lang.updateLater("no", "nor")
lang.updateLater("tw", "twi")
lang.updateLater("nb", "nob")
lang.updateLater("ak", "aka")
lang.updateLater("bh", "bih")
// Ensure that each 2-letter code is matched with a 3-letter code.
for _, v := range lang.s[1:] {
s, ok := lang.update[v]
if !ok {
if s, ok = lang.update[langAliasMap.update[v]]; !ok {
continue
}
lang.update[v] = s
}
if v[0] != s[0] {
altLangISO3.add(s)
altLangISO3.updateLater(s, v)
}
}
// Complete canonicalized language tags.
lang.freeze()
for i, v := range lang.s {
// We can avoid these manual entries by using the IANA registry directly.
// Seems easier to update the list manually, as changes are rare.
// The panic in this loop will trigger if we miss an entry.
add := ""
if s, ok := lang.update[v]; ok {
if s[0] == v[0] {
add = s[1:]
} else {
add = string([]byte{0, byte(altLangISO3.index(s))})
}
} else if len(v) == 3 {
add = "\x00"
} else {
log.Panicf("no data for long form of %q", v)
}
lang.s[i] += add
}
b.writeConst("lang", tag.Index(lang.join()))
b.writeConst("langNoIndexOffset", len(b.lang.s))
// space of all valid 3-letter language identifiers.
b.writeBitVector("langNoIndex", b.langNoIndex.slice())
altLangIndex := []uint16{}
for i, s := range altLangISO3.slice() {
altLangISO3.s[i] += string([]byte{byte(len(altLangIndex))})
if i > 0 {
idx := b.lang.index(altLangISO3.update[s])
altLangIndex = append(altLangIndex, uint16(idx))
}
}
b.writeConst("altLangISO3", tag.Index(altLangISO3.join()))
b.writeSlice("altLangIndex", altLangIndex)
b.writeSortedMap("langAliasMap", &langAliasMap, b.langIndex)
types := make([]langAliasType, len(langAliasMap.s))
for i, s := range langAliasMap.s {
types[i] = aliasTypeMap[s]
}
b.writeSlice("langAliasTypes", types)
}
var scriptConsts = []string{
"Latn", "Hani", "Hans", "Hant", "Qaaa", "Qaai", "Qabx", "Zinh", "Zyyy",
"Zzzz",
}
func (b *builder) writeScript() {
b.writeConsts(b.script.index, scriptConsts...)
b.writeConst("script", tag.Index(b.script.join()))
supp := make([]uint8, len(b.lang.slice()))
for i, v := range b.lang.slice()[1:] {
if sc := b.registry[v].suppressScript; sc != "" {
supp[i+1] = uint8(b.script.index(sc))
}
}
b.writeSlice("suppressScript", supp)
// There is only one deprecated script in CLDR. This value is hard-coded.
// We check here if the code must be updated.
for _, a := range b.supp.Metadata.Alias.ScriptAlias {
if a.Type != "Qaai" {
log.Panicf("unexpected deprecated stript %q", a.Type)
}
}
}
func parseM49(s string) int16 {
if len(s) == 0 {
return 0
}
v, err := strconv.ParseUint(s, 10, 10)
failOnError(err)
return int16(v)
}
var regionConsts = []string{
"001", "419", "BR", "CA", "ES", "GB", "MD", "PT", "UK", "US",
"ZZ", "XA", "XC", "XK", // Unofficial tag for Kosovo.
}
func (b *builder) writeRegion() {
b.writeConsts(b.region.index, regionConsts...)
isoOffset := b.region.index("AA")
m49map := make([]int16, len(b.region.slice()))
fromM49map := make(map[int16]int)
altRegionISO3 := ""
altRegionIDs := []uint16{}
b.writeConst("isoRegionOffset", isoOffset)
// 2-letter region lookup and mapping to numeric codes.
regionISO := b.region.clone()
regionISO.s = regionISO.s[isoOffset:]
regionISO.sorted = false
regionTypes := make([]byte, len(b.region.s))
// Is the region valid BCP 47?
for s, e := range b.registry {
if len(s) == 2 && s == strings.ToUpper(s) {
i := b.region.index(s)
for _, d := range e.description {
if strings.Contains(d, "Private use") {
regionTypes[i] = iso3166UserAssigned
}
}
regionTypes[i] |= bcp47Region
}
}
// Is the region a valid ccTLD?
r := gen.OpenIANAFile("domains/root/db")
defer r.Close()
buf, err := ioutil.ReadAll(r)
failOnError(err)
re := regexp.MustCompile(`"/domains/root/db/([a-z]{2}).html"`)
for _, m := range re.FindAllSubmatch(buf, -1) {
i := b.region.index(strings.ToUpper(string(m[1])))
regionTypes[i] |= ccTLD
}
b.writeSlice("regionTypes", regionTypes)
iso3Set := make(map[string]int)
update := func(iso2, iso3 string) {
i := regionISO.index(iso2)
if j, ok := iso3Set[iso3]; !ok && iso3[0] == iso2[0] {
regionISO.s[i] += iso3[1:]
iso3Set[iso3] = -1
} else {
if ok && j >= 0 {
regionISO.s[i] += string([]byte{0, byte(j)})
} else {
iso3Set[iso3] = len(altRegionISO3)
regionISO.s[i] += string([]byte{0, byte(len(altRegionISO3))})
altRegionISO3 += iso3
altRegionIDs = append(altRegionIDs, uint16(isoOffset+i))
}
}
}
for _, tc := range b.supp.CodeMappings.TerritoryCodes {
i := regionISO.index(tc.Type) + isoOffset
if d := m49map[i]; d != 0 {
log.Panicf("%s found as a duplicate UN.M49 code of %03d", tc.Numeric, d)
}
m49 := parseM49(tc.Numeric)
m49map[i] = m49
if r := fromM49map[m49]; r == 0 {
fromM49map[m49] = i
} else if r != i {
dep := b.registry[regionISO.s[r-isoOffset]].deprecated
if t := b.registry[tc.Type]; t != nil && dep != "" && (t.deprecated == "" || t.deprecated > dep) {
fromM49map[m49] = i
}
}
}
for _, ta := range b.supp.Metadata.Alias.TerritoryAlias {
if len(ta.Type) == 3 && ta.Type[0] <= '9' && len(ta.Replacement) == 2 {
from := parseM49(ta.Type)
if r := fromM49map[from]; r == 0 {
fromM49map[from] = regionISO.index(ta.Replacement) + isoOffset
}
}
}
for _, tc := range b.supp.CodeMappings.TerritoryCodes {
if len(tc.Alpha3) == 3 {
update(tc.Type, tc.Alpha3)
}
}
// This entries are not included in territoryCodes. Mostly 3-letter variants
// of deleted codes and an entry for QU.
for _, m := range []struct{ iso2, iso3 string }{
{"CT", "CTE"},
{"DY", "DHY"},
{"HV", "HVO"},
{"JT", "JTN"},
{"MI", "MID"},
{"NH", "NHB"},
{"NQ", "ATN"},
{"PC", "PCI"},
{"PU", "PUS"},
{"PZ", "PCZ"},
{"RH", "RHO"},
{"VD", "VDR"},
{"WK", "WAK"},
// These three-letter codes are used for others as well.
{"FQ", "ATF"},
} {
update(m.iso2, m.iso3)
}
for i, s := range regionISO.s {
if len(s) != 4 {
regionISO.s[i] = s + " "
}
}
b.writeConst("regionISO", tag.Index(regionISO.join()))
b.writeConst("altRegionISO3", altRegionISO3)
b.writeSlice("altRegionIDs", altRegionIDs)
// Create list of deprecated regions.
// TODO: consider inserting SF -> FI. Not included by CLDR, but is the only
// Transitionally-reserved mapping not included.
regionOldMap := stringSet{}
// Include regions in territoryAlias (not all are in the IANA registry!)
for _, reg := range b.supp.Metadata.Alias.TerritoryAlias {
if len(reg.Type) == 2 && reg.Reason == "deprecated" && len(reg.Replacement) == 2 {
regionOldMap.add(reg.Type)
regionOldMap.updateLater(reg.Type, reg.Replacement)
i, _ := regionISO.find(reg.Type)
j, _ := regionISO.find(reg.Replacement)
if k := m49map[i+isoOffset]; k == 0 {
m49map[i+isoOffset] = m49map[j+isoOffset]
}
}
}
b.writeSortedMap("regionOldMap", &regionOldMap, func(s string) uint16 {
return uint16(b.region.index(s))
})
// 3-digit region lookup, groupings.
for i := 1; i < isoOffset; i++ {
m := parseM49(b.region.s[i])
m49map[i] = m
fromM49map[m] = i
}
b.writeSlice("m49", m49map)
const (
searchBits = 7
regionBits = 9
)
if len(m49map) >= 1<<regionBits {
log.Fatalf("Maximum number of regions exceeded: %d > %d", len(m49map), 1<<regionBits)
}
m49Index := [9]int16{}
fromM49 := []uint16{}
m49 := []int{}
for k, _ := range fromM49map {
m49 = append(m49, int(k))
}
sort.Ints(m49)
for _, k := range m49[1:] {
val := (k & (1<<searchBits - 1)) << regionBits
fromM49 = append(fromM49, uint16(val|fromM49map[int16(k)]))
m49Index[1:][k>>searchBits] = int16(len(fromM49))
}
b.writeSlice("m49Index", m49Index)
b.writeSlice("fromM49", fromM49)
}
const (
// TODO: put these lists in regionTypes as user data? Could be used for
// various optimizations and refinements and could be exposed in the API.
iso3166Except = "AC CP DG EA EU FX IC SU TA UK"
iso3166Trans = "AN BU CS NT TP YU ZR" // SF is not in our set of Regions.
// DY and RH are actually not deleted, but indeterminately reserved.
iso3166DelCLDR = "CT DD DY FQ HV JT MI NH NQ PC PU PZ RH VD WK YD"
)
const (
iso3166UserAssigned = 1 << iota
ccTLD
bcp47Region
)
func find(list []string, s string) int {
for i, t := range list {
if t == s {
return i
}
}
return -1
}
// writeVariants generates per-variant information and creates a map from variant
// name to index value. We assign index values such that sorting multiple
// variants by index value will result in the correct order.
// There are two types of variants: specialized and general. Specialized variants
// are only applicable to certain language or language-script pairs. Generalized
// variants apply to any language. Generalized variants always sort after
// specialized variants. We will therefore always assign a higher index value
// to a generalized variant than any other variant. Generalized variants are
// sorted alphabetically among themselves.
// Specialized variants may also sort after other specialized variants. Such
// variants will be ordered after any of the variants they may follow.
// We assume that if a variant x is followed by a variant y, then for any prefix
// p of x, p-x is a prefix of y. This allows us to order tags based on the
// maximum of the length of any of its prefixes.
// TODO: it is possible to define a set of Prefix values on variants such that
// a total order cannot be defined to the point that this algorithm breaks.
// In other words, we cannot guarantee the same order of variants for the
// future using the same algorithm or for non-compliant combinations of
// variants. For this reason, consider using simple alphabetic sorting
// of variants and ignore Prefix restrictions altogether.
func (b *builder) writeVariant() {
generalized := stringSet{}
specialized := stringSet{}
specializedExtend := stringSet{}
// Collate the variants by type and check assumptions.
for _, v := range b.variant.slice() {
e := b.registry[v]
if len(e.prefix) == 0 {
generalized.add(v)
continue
}
c := strings.Split(e.prefix[0], "-")
hasScriptOrRegion := false
if len(c) > 1 {
_, hasScriptOrRegion = b.script.find(c[1])
if !hasScriptOrRegion {
_, hasScriptOrRegion = b.region.find(c[1])
}
}
if len(c) == 1 || len(c) == 2 && hasScriptOrRegion {
// Variant is preceded by a language.
specialized.add(v)
continue
}
// Variant is preceded by another variant.
specializedExtend.add(v)
prefix := c[0] + "-"
if hasScriptOrRegion {
prefix += c[1]
}
for _, p := range e.prefix {
// Verify that the prefix minus the last element is a prefix of the
// predecessor element.
i := strings.LastIndex(p, "-")
pred := b.registry[p[i+1:]]
if find(pred.prefix, p[:i]) < 0 {
log.Fatalf("prefix %q for variant %q not consistent with predecessor spec", p, v)
}
// The sorting used below does not work in the general case. It works
// if we assume that variants that may be followed by others only have
// prefixes of the same length. Verify this.
count := strings.Count(p[:i], "-")
for _, q := range pred.prefix {
if c := strings.Count(q, "-"); c != count {
log.Fatalf("variant %q preceding %q has a prefix %q of size %d; want %d", p[i+1:], v, q, c, count)
}
}
if !strings.HasPrefix(p, prefix) {
log.Fatalf("prefix %q of variant %q should start with %q", p, v, prefix)
}
}
}
// Sort extended variants.
a := specializedExtend.s
less := func(v, w string) bool {
// Sort by the maximum number of elements.
maxCount := func(s string) (max int) {
for _, p := range b.registry[s].prefix {
if c := strings.Count(p, "-"); c > max {
max = c
}
}
return
}
if cv, cw := maxCount(v), maxCount(w); cv != cw {
return cv < cw
}
// Sort by name as tie breaker.
return v < w
}
sort.Sort(funcSorter{less, sort.StringSlice(a)})
specializedExtend.frozen = true
// Create index from variant name to index.
variantIndex := make(map[string]uint8)
add := func(s []string) {
for _, v := range s {
variantIndex[v] = uint8(len(variantIndex))
}
}
add(specialized.slice())
add(specializedExtend.s)
numSpecialized := len(variantIndex)
add(generalized.slice())
if n := len(variantIndex); n > 255 {
log.Fatalf("maximum number of variants exceeded: was %d; want <= 255", n)
}
b.writeMap("variantIndex", variantIndex)
b.writeConst("variantNumSpecialized", numSpecialized)
}
func (b *builder) writeLanguageInfo() {
}
// writeLikelyData writes tables that are used both for finding parent relations and for
// language matching. Each entry contains additional bits to indicate the status of the
// data to know when it cannot be used for parent relations.
func (b *builder) writeLikelyData() {
const (
isList = 1 << iota
scriptInFrom
regionInFrom
)
type ( // generated types
likelyScriptRegion struct {
region uint16
script uint8
flags uint8
}
likelyLangScript struct {
lang uint16
script uint8
flags uint8
}
likelyLangRegion struct {
lang uint16
region uint16
}
// likelyTag is used for getting likely tags for group regions, where
// the likely region might be a region contained in the group.
likelyTag struct {
lang uint16
region uint16
script uint8
}
)
var ( // generated variables
likelyRegionGroup = make([]likelyTag, len(b.groups))
likelyLang = make([]likelyScriptRegion, len(b.lang.s))
likelyRegion = make([]likelyLangScript, len(b.region.s))
likelyScript = make([]likelyLangRegion, len(b.script.s))
likelyLangList = []likelyScriptRegion{}
likelyRegionList = []likelyLangScript{}
)
type fromTo struct {
from, to []string
}
langToOther := map[int][]fromTo{}
regionToOther := map[int][]fromTo{}
for _, m := range b.supp.LikelySubtags.LikelySubtag {
from := strings.Split(m.From, "_")
to := strings.Split(m.To, "_")
if len(to) != 3 {
log.Fatalf("invalid number of subtags in %q: found %d, want 3", m.To, len(to))
}
if len(from) > 3 {
log.Fatalf("invalid number of subtags: found %d, want 1-3", len(from))
}
if from[0] != to[0] && from[0] != "und" {
log.Fatalf("unexpected language change in expansion: %s -> %s", from, to)
}
if len(from) == 3 {
if from[2] != to[2] {
log.Fatalf("unexpected region change in expansion: %s -> %s", from, to)
}
if from[0] != "und" {
log.Fatalf("unexpected fully specified from tag: %s -> %s", from, to)
}
}
if len(from) == 1 || from[0] != "und" {
id := 0
if from[0] != "und" {
id = b.lang.index(from[0])
}
langToOther[id] = append(langToOther[id], fromTo{from, to})
} else if len(from) == 2 && len(from[1]) == 4 {
sid := b.script.index(from[1])
likelyScript[sid].lang = uint16(b.langIndex(to[0]))
likelyScript[sid].region = uint16(b.region.index(to[2]))
} else {
r := b.region.index(from[len(from)-1])
if id, ok := b.groups[r]; ok {
if from[0] != "und" {
log.Fatalf("region changed unexpectedly: %s -> %s", from, to)
}
likelyRegionGroup[id].lang = uint16(b.langIndex(to[0]))
likelyRegionGroup[id].script = uint8(b.script.index(to[1]))
likelyRegionGroup[id].region = uint16(b.region.index(to[2]))
} else {
regionToOther[r] = append(regionToOther[r], fromTo{from, to})
}
}
}
b.writeType(likelyLangRegion{})
b.writeSlice("likelyScript", likelyScript)
for id := range b.lang.s {
list := langToOther[id]
if len(list) == 1 {
likelyLang[id].region = uint16(b.region.index(list[0].to[2]))
likelyLang[id].script = uint8(b.script.index(list[0].to[1]))
} else if len(list) > 1 {
likelyLang[id].flags = isList
likelyLang[id].region = uint16(len(likelyLangList))
likelyLang[id].script = uint8(len(list))
for _, x := range list {
flags := uint8(0)
if len(x.from) > 1 {
if x.from[1] == x.to[2] {
flags = regionInFrom
} else {
flags = scriptInFrom
}
}
likelyLangList = append(likelyLangList, likelyScriptRegion{
region: uint16(b.region.index(x.to[2])),
script: uint8(b.script.index(x.to[1])),
flags: flags,
})
}
}
}
// TODO: merge suppressScript data with this table.
b.writeType(likelyScriptRegion{})
b.writeSlice("likelyLang", likelyLang)
b.writeSlice("likelyLangList", likelyLangList)
for id := range b.region.s {
list := regionToOther[id]
if len(list) == 1 {
likelyRegion[id].lang = uint16(b.langIndex(list[0].to[0]))
likelyRegion[id].script = uint8(b.script.index(list[0].to[1]))
if len(list[0].from) > 2 {
likelyRegion[id].flags = scriptInFrom
}
} else if len(list) > 1 {
likelyRegion[id].flags = isList
likelyRegion[id].lang = uint16(len(likelyRegionList))
likelyRegion[id].script = uint8(len(list))
for i, x := range list {
if len(x.from) == 2 && i != 0 || i > 0 && len(x.from) != 3 {
log.Fatalf("unspecified script must be first in list: %v at %d", x.from, i)
}
x := likelyLangScript{
lang: uint16(b.langIndex(x.to[0])),
script: uint8(b.script.index(x.to[1])),
}
if len(list[0].from) > 2 {
x.flags = scriptInFrom
}
likelyRegionList = append(likelyRegionList, x)
}
}
}
b.writeType(likelyLangScript{})
b.writeSlice("likelyRegion", likelyRegion)
b.writeSlice("likelyRegionList", likelyRegionList)
b.writeType(likelyTag{})
b.writeSlice("likelyRegionGroup", likelyRegionGroup)
}
type mutualIntelligibility struct {
want, have uint16
distance uint8
oneway bool
}
type scriptIntelligibility struct {
wantLang, haveLang uint16
wantScript, haveScript uint8
distance uint8
// Always oneway
}
type regionIntelligibility struct {
lang uint16 // compact language id
script uint8 // 0 means any
group uint8 // 0 means any; if bit 7 is set it means inverse
distance uint8
// Always twoway.
}
// writeMatchData writes tables with languages and scripts for which there is
// mutual intelligibility. The data is based on CLDR's languageMatching data.
// Note that we use a different algorithm than the one defined by CLDR and that
// we slightly modify the data. For example, we convert scores to confidence levels.
// We also drop all region-related data as we use a different algorithm to
// determine region equivalence.
func (b *builder) writeMatchData() {
lm := b.supp.LanguageMatching.LanguageMatches
cldr.MakeSlice(&lm).SelectAnyOf("type", "written_new")
regionHierarchy := map[string][]string{}
for _, g := range b.supp.TerritoryContainment.Group {
regions := strings.Split(g.Contains, " ")
regionHierarchy[g.Type] = append(regionHierarchy[g.Type], regions...)
}
regionToGroups := make([]uint8, len(b.region.s))
idToIndex := map[string]uint8{}
for i, mv := range lm[0].MatchVariable {
if i > 6 {
log.Fatalf("Too many groups: %d", i)
}
idToIndex[mv.Id] = uint8(i + 1)
// TODO: also handle '-'
for _, r := range strings.Split(mv.Value, "+") {
todo := []string{r}
for k := 0; k < len(todo); k++ {
r := todo[k]
regionToGroups[b.region.index(r)] |= 1 << uint8(i)
todo = append(todo, regionHierarchy[r]...)
}
}
}
b.writeSlice("regionToGroups", regionToGroups)
b.writeType(mutualIntelligibility{})
b.writeType(scriptIntelligibility{})
b.writeType(regionIntelligibility{})
matchLang := []mutualIntelligibility{{
// TODO: remove once CLDR is fixed.
want: uint16(b.langIndex("sr")),
have: uint16(b.langIndex("hr")),
distance: uint8(5),
}, {
want: uint16(b.langIndex("sr")),
have: uint16(b.langIndex("bs")),
distance: uint8(5),
}}
matchScript := []scriptIntelligibility{}
matchRegion := []regionIntelligibility{}
// Convert the languageMatch entries in lists keyed by desired language.
for _, m := range lm[0].LanguageMatch {
// Different versions of CLDR use different separators.
desired := strings.Replace(m.Desired, "-", "_", -1)
supported := strings.Replace(m.Supported, "-", "_", -1)
d := strings.Split(desired, "_")
s := strings.Split(supported, "_")
if len(d) != len(s) {
log.Fatalf("not supported: desired=%q; supported=%q", desired, supported)
continue
}
distance, _ := strconv.ParseInt(m.Distance, 10, 8)
switch len(d) {
case 2:
if desired == supported && desired == "*_*" {
continue
}
// language-script pair.
matchScript = append(matchScript, scriptIntelligibility{
wantLang: uint16(b.langIndex(d[0])),
haveLang: uint16(b.langIndex(s[0])),
wantScript: uint8(b.script.index(d[1])),
haveScript: uint8(b.script.index(s[1])),
distance: uint8(distance),
})
if m.Oneway != "true" {
matchScript = append(matchScript, scriptIntelligibility{
wantLang: uint16(b.langIndex(s[0])),
haveLang: uint16(b.langIndex(d[0])),
wantScript: uint8(b.script.index(s[1])),
haveScript: uint8(b.script.index(d[1])),
distance: uint8(distance),
})
}
case 1:
if desired == supported && desired == "*" {
continue
}
if distance == 1 {
// nb == no is already handled by macro mapping. Check there
// really is only this case.
if d[0] != "no" || s[0] != "nb" {
log.Fatalf("unhandled equivalence %s == %s", s[0], d[0])
}
continue
}
// TODO: consider dropping oneway field and just doubling the entry.
matchLang = append(matchLang, mutualIntelligibility{
want: uint16(b.langIndex(d[0])),
have: uint16(b.langIndex(s[0])),
distance: uint8(distance),
oneway: m.Oneway == "true",
})
case 3:
if desired == supported && desired == "*_*_*" {
continue
}
if desired != supported { // (Weird but correct.)
log.Fatalf("not supported: desired=%q; supported=%q", desired, supported)
continue
}
ri := regionIntelligibility{
lang: b.langIndex(d[0]),
distance: uint8(distance),
}
if d[1] != "*" {
ri.script = uint8(b.script.index(d[1]))
}
switch {
case d[2] == "*":
ri.group = 0x80 // not contained in anything
case strings.HasPrefix(d[2], "$!"):
ri.group = 0x80
d[2] = "$" + d[2][len("$!"):]
fallthrough
case strings.HasPrefix(d[2], "$"):
ri.group |= idToIndex[d[2]]
}
matchRegion = append(matchRegion, ri)
default:
log.Fatalf("not supported: desired=%q; supported=%q", desired, supported)
}
}
sort.SliceStable(matchLang, func(i, j int) bool {
return matchLang[i].distance < matchLang[j].distance
})
b.writeSlice("matchLang", matchLang)
sort.SliceStable(matchScript, func(i, j int) bool {
return matchScript[i].distance < matchScript[j].distance
})
b.writeSlice("matchScript", matchScript)
sort.SliceStable(matchRegion, func(i, j int) bool {
return matchRegion[i].distance < matchRegion[j].distance
})
b.writeSlice("matchRegion", matchRegion)
}
func (b *builder) writeRegionInclusionData() {
var (
// mm holds for each group the set of groups with a distance of 1.
mm = make(map[int][]index)
// containment holds for each group the transitive closure of
// containment of other groups.
containment = make(map[index][]index)
)
for _, g := range b.supp.TerritoryContainment.Group {
// Skip UN and EURO zone as they are flattening the containment
// relationship.
if g.Type == "EZ" || g.Type == "UN" {
continue
}
group := b.region.index(g.Type)
groupIdx := b.groups[group]
for _, mem := range strings.Split(g.Contains, " ") {
r := b.region.index(mem)
mm[r] = append(mm[r], groupIdx)
if g, ok := b.groups[r]; ok {
mm[group] = append(mm[group], g)
containment[groupIdx] = append(containment[groupIdx], g)
}
}
}
regionContainment := make([]uint32, len(b.groups))
for _, g := range b.groups {
l := containment[g]
// Compute the transitive closure of containment.
for i := 0; i < len(l); i++ {
l = append(l, containment[l[i]]...)
}
// Compute the bitmask.
regionContainment[g] = 1 << g
for _, v := range l {
regionContainment[g] |= 1 << v
}
}
b.writeSlice("regionContainment", regionContainment)
regionInclusion := make([]uint8, len(b.region.s))
bvs := make(map[uint32]index)
// Make the first bitvector positions correspond with the groups.
for r, i := range b.groups {
bv := uint32(1 << i)
for _, g := range mm[r] {
bv |= 1 << g
}
bvs[bv] = i
regionInclusion[r] = uint8(bvs[bv])
}
for r := 1; r < len(b.region.s); r++ {
if _, ok := b.groups[r]; !ok {
bv := uint32(0)
for _, g := range mm[r] {
bv |= 1 << g
}
if bv == 0 {
// Pick the world for unspecified regions.
bv = 1 << b.groups[b.region.index("001")]
}
if _, ok := bvs[bv]; !ok {
bvs[bv] = index(len(bvs))
}
regionInclusion[r] = uint8(bvs[bv])
}
}
b.writeSlice("regionInclusion", regionInclusion)
regionInclusionBits := make([]uint32, len(bvs))
for k, v := range bvs {
regionInclusionBits[v] = uint32(k)
}
// Add bit vectors for increasingly large distances until a fixed point is reached.
regionInclusionNext := []uint8{}
for i := 0; i < len(regionInclusionBits); i++ {
bits := regionInclusionBits[i]
next := bits
for i := uint(0); i < uint(len(b.groups)); i++ {
if bits&(1<<i) != 0 {
next |= regionInclusionBits[i]
}
}
if _, ok := bvs[next]; !ok {
bvs[next] = index(len(bvs))
regionInclusionBits = append(regionInclusionBits, next)
}
regionInclusionNext = append(regionInclusionNext, uint8(bvs[next]))
}
b.writeSlice("regionInclusionBits", regionInclusionBits)
b.writeSlice("regionInclusionNext", regionInclusionNext)
}
type parentRel struct {
lang uint16
script uint8
maxScript uint8
toRegion uint16
fromRegion []uint16
}
func (b *builder) writeParents() {
b.writeType(parentRel{})
parents := []parentRel{}
// Construct parent overrides.
n := 0
for _, p := range b.data.Supplemental().ParentLocales.ParentLocale {
// Skipping non-standard scripts to root is implemented using addTags.
if p.Parent == "root" {
continue
}
sub := strings.Split(p.Parent, "_")
parent := parentRel{lang: b.langIndex(sub[0])}
if len(sub) == 2 {
// TODO: check that all undefined scripts are indeed Latn in these
// cases.
parent.maxScript = uint8(b.script.index("Latn"))
parent.toRegion = uint16(b.region.index(sub[1]))
} else {
parent.script = uint8(b.script.index(sub[1]))
parent.maxScript = parent.script
parent.toRegion = uint16(b.region.index(sub[2]))
}
for _, c := range strings.Split(p.Locales, " ") {
region := b.region.index(c[strings.LastIndex(c, "_")+1:])
parent.fromRegion = append(parent.fromRegion, uint16(region))
}
parents = append(parents, parent)
n += len(parent.fromRegion)
}
b.writeSliceAddSize("parents", n*2, parents)
}
func main() {
gen.Init()
gen.Repackage("gen_common.go", "common.go", "language")
w := gen.NewCodeWriter()
defer w.WriteGoFile("tables.go", "language")
fmt.Fprintln(w, `import "golang.org/x/text/internal/tag"`)
b := newBuilder(w)
gen.WriteCLDRVersion(w)
b.parseIndices()
b.writeType(fromTo{})
b.writeLanguage()
b.writeScript()
b.writeRegion()
b.writeVariant()
// TODO: b.writeLocale()
b.computeRegionGroups()
b.writeLikelyData()
b.writeMatchData()
b.writeRegionInclusionData()
b.writeParents()
}