1
1
mirror of https://github.com/go-gitea/gitea synced 2024-11-09 19:54:25 +00:00
gitea/vendor/github.com/klauspost/compress/flate/inflate.go

1011 lines
26 KiB
Go
Raw Normal View History

2016-11-03 22:16:01 +00:00
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package flate implements the DEFLATE compressed data format, described in
// RFC 1951. The gzip and zlib packages implement access to DEFLATE-based file
// formats.
package flate
import (
"bufio"
"fmt"
2016-11-03 22:16:01 +00:00
"io"
"math/bits"
2016-11-03 22:16:01 +00:00
"strconv"
"sync"
)
const (
maxCodeLen = 16 // max length of Huffman code
maxCodeLenMask = 15 // mask for max length of Huffman code
2016-11-03 22:16:01 +00:00
// The next three numbers come from the RFC section 3.2.7, with the
// additional proviso in section 3.2.5 which implies that distance codes
// 30 and 31 should never occur in compressed data.
maxNumLit = 286
maxNumDist = 30
numCodes = 19 // number of codes in Huffman meta-code
debugDecode = false
2016-11-03 22:16:01 +00:00
)
// Value of length - 3 and extra bits.
type lengthExtra struct {
length, extra uint8
}
var decCodeToLen = [32]lengthExtra{{length: 0x0, extra: 0x0}, {length: 0x1, extra: 0x0}, {length: 0x2, extra: 0x0}, {length: 0x3, extra: 0x0}, {length: 0x4, extra: 0x0}, {length: 0x5, extra: 0x0}, {length: 0x6, extra: 0x0}, {length: 0x7, extra: 0x0}, {length: 0x8, extra: 0x1}, {length: 0xa, extra: 0x1}, {length: 0xc, extra: 0x1}, {length: 0xe, extra: 0x1}, {length: 0x10, extra: 0x2}, {length: 0x14, extra: 0x2}, {length: 0x18, extra: 0x2}, {length: 0x1c, extra: 0x2}, {length: 0x20, extra: 0x3}, {length: 0x28, extra: 0x3}, {length: 0x30, extra: 0x3}, {length: 0x38, extra: 0x3}, {length: 0x40, extra: 0x4}, {length: 0x50, extra: 0x4}, {length: 0x60, extra: 0x4}, {length: 0x70, extra: 0x4}, {length: 0x80, extra: 0x5}, {length: 0xa0, extra: 0x5}, {length: 0xc0, extra: 0x5}, {length: 0xe0, extra: 0x5}, {length: 0xff, extra: 0x0}, {length: 0x0, extra: 0x0}, {length: 0x0, extra: 0x0}, {length: 0x0, extra: 0x0}}
2016-11-03 22:16:01 +00:00
// Initialize the fixedHuffmanDecoder only once upon first use.
var fixedOnce sync.Once
var fixedHuffmanDecoder huffmanDecoder
// A CorruptInputError reports the presence of corrupt input at a given offset.
type CorruptInputError int64
func (e CorruptInputError) Error() string {
return "flate: corrupt input before offset " + strconv.FormatInt(int64(e), 10)
}
// An InternalError reports an error in the flate code itself.
type InternalError string
func (e InternalError) Error() string { return "flate: internal error: " + string(e) }
// A ReadError reports an error encountered while reading input.
//
// Deprecated: No longer returned.
type ReadError struct {
Offset int64 // byte offset where error occurred
Err error // error returned by underlying Read
}
func (e *ReadError) Error() string {
return "flate: read error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
}
// A WriteError reports an error encountered while writing output.
//
// Deprecated: No longer returned.
type WriteError struct {
Offset int64 // byte offset where error occurred
Err error // error returned by underlying Write
}
func (e *WriteError) Error() string {
return "flate: write error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
}
// Resetter resets a ReadCloser returned by NewReader or NewReaderDict to
// to switch to a new underlying Reader. This permits reusing a ReadCloser
// instead of allocating a new one.
type Resetter interface {
// Reset discards any buffered data and resets the Resetter as if it was
// newly initialized with the given reader.
Reset(r io.Reader, dict []byte) error
}
// The data structure for decoding Huffman tables is based on that of
// zlib. There is a lookup table of a fixed bit width (huffmanChunkBits),
// For codes smaller than the table width, there are multiple entries
// (each combination of trailing bits has the same value). For codes
// larger than the table width, the table contains a link to an overflow
// table. The width of each entry in the link table is the maximum code
// size minus the chunk width.
//
// Note that you can do a lookup in the table even without all bits
// filled. Since the extra bits are zero, and the DEFLATE Huffman codes
// have the property that shorter codes come before longer ones, the
// bit length estimate in the result is a lower bound on the actual
// number of bits.
//
// See the following:
// http://www.gzip.org/algorithm.txt
// chunk & 15 is number of bits
// chunk >> 4 is value, including table link
const (
huffmanChunkBits = 9
huffmanNumChunks = 1 << huffmanChunkBits
huffmanCountMask = 15
huffmanValueShift = 4
)
type huffmanDecoder struct {
maxRead int // the maximum number of bits we can read and not overread
chunks *[huffmanNumChunks]uint16 // chunks as described above
links [][]uint16 // overflow links
linkMask uint32 // mask the width of the link table
2016-11-03 22:16:01 +00:00
}
// Initialize Huffman decoding tables from array of code lengths.
// Following this function, h is guaranteed to be initialized into a complete
// tree (i.e., neither over-subscribed nor under-subscribed). The exception is a
// degenerate case where the tree has only a single symbol with length 1. Empty
// trees are permitted.
func (h *huffmanDecoder) init(lengths []int) bool {
2016-11-03 22:16:01 +00:00
// Sanity enables additional runtime tests during Huffman
// table construction. It's intended to be used during
// development to supplement the currently ad-hoc unit tests.
const sanity = false
if h.chunks == nil {
h.chunks = &[huffmanNumChunks]uint16{}
}
if h.maxRead != 0 {
*h = huffmanDecoder{chunks: h.chunks, links: h.links}
2016-11-03 22:16:01 +00:00
}
// Count number of codes of each length,
// compute maxRead and max length.
2016-11-03 22:16:01 +00:00
var count [maxCodeLen]int
var min, max int
for _, n := range lengths {
2016-11-03 22:16:01 +00:00
if n == 0 {
continue
}
if min == 0 || n < min {
min = n
}
if n > max {
max = n
}
count[n&maxCodeLenMask]++
2016-11-03 22:16:01 +00:00
}
// Empty tree. The decompressor.huffSym function will fail later if the tree
// is used. Technically, an empty tree is only valid for the HDIST tree and
// not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree
// is guaranteed to fail since it will attempt to use the tree to decode the
// codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is
// guaranteed to fail later since the compressed data section must be
// composed of at least one symbol (the end-of-block marker).
if max == 0 {
return true
}
code := 0
var nextcode [maxCodeLen]int
for i := min; i <= max; i++ {
code <<= 1
nextcode[i&maxCodeLenMask] = code
code += count[i&maxCodeLenMask]
2016-11-03 22:16:01 +00:00
}
// Check that the coding is complete (i.e., that we've
// assigned all 2-to-the-max possible bit sequences).
// Exception: To be compatible with zlib, we also need to
// accept degenerate single-code codings. See also
// TestDegenerateHuffmanCoding.
if code != 1<<uint(max) && !(code == 1 && max == 1) {
if debugDecode {
fmt.Println("coding failed, code, max:", code, max, code == 1<<uint(max), code == 1 && max == 1, "(one should be true)")
}
2016-11-03 22:16:01 +00:00
return false
}
h.maxRead = min
chunks := h.chunks[:]
for i := range chunks {
chunks[i] = 0
}
2016-11-03 22:16:01 +00:00
if max > huffmanChunkBits {
numLinks := 1 << (uint(max) - huffmanChunkBits)
h.linkMask = uint32(numLinks - 1)
// create link tables
link := nextcode[huffmanChunkBits+1] >> 1
if cap(h.links) < huffmanNumChunks-link {
h.links = make([][]uint16, huffmanNumChunks-link)
} else {
h.links = h.links[:huffmanNumChunks-link]
}
2016-11-03 22:16:01 +00:00
for j := uint(link); j < huffmanNumChunks; j++ {
reverse := int(bits.Reverse16(uint16(j)))
2016-11-03 22:16:01 +00:00
reverse >>= uint(16 - huffmanChunkBits)
off := j - uint(link)
if sanity && h.chunks[reverse] != 0 {
panic("impossible: overwriting existing chunk")
}
h.chunks[reverse] = uint16(off<<huffmanValueShift | (huffmanChunkBits + 1))
if cap(h.links[off]) < numLinks {
h.links[off] = make([]uint16, numLinks)
} else {
links := h.links[off][:0]
h.links[off] = links[:numLinks]
}
2016-11-03 22:16:01 +00:00
}
} else {
h.links = h.links[:0]
2016-11-03 22:16:01 +00:00
}
for i, n := range lengths {
2016-11-03 22:16:01 +00:00
if n == 0 {
continue
}
code := nextcode[n]
nextcode[n]++
chunk := uint16(i<<huffmanValueShift | n)
reverse := int(bits.Reverse16(uint16(code)))
2016-11-03 22:16:01 +00:00
reverse >>= uint(16 - n)
if n <= huffmanChunkBits {
for off := reverse; off < len(h.chunks); off += 1 << uint(n) {
// We should never need to overwrite
// an existing chunk. Also, 0 is
// never a valid chunk, because the
// lower 4 "count" bits should be
// between 1 and 15.
if sanity && h.chunks[off] != 0 {
panic("impossible: overwriting existing chunk")
}
h.chunks[off] = chunk
}
} else {
j := reverse & (huffmanNumChunks - 1)
if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 {
// Longer codes should have been
// associated with a link table above.
panic("impossible: not an indirect chunk")
}
value := h.chunks[j] >> huffmanValueShift
linktab := h.links[value]
reverse >>= huffmanChunkBits
for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) {
if sanity && linktab[off] != 0 {
panic("impossible: overwriting existing chunk")
}
linktab[off] = chunk
}
}
}
if sanity {
// Above we've sanity checked that we never overwrote
// an existing entry. Here we additionally check that
// we filled the tables completely.
for i, chunk := range h.chunks {
if chunk == 0 {
// As an exception, in the degenerate
// single-code case, we allow odd
// chunks to be missing.
if code == 1 && i%2 == 1 {
continue
}
panic("impossible: missing chunk")
}
}
for _, linktab := range h.links {
for _, chunk := range linktab {
if chunk == 0 {
panic("impossible: missing chunk")
}
}
}
}
return true
}
// The actual read interface needed by NewReader.
// If the passed in io.Reader does not also have ReadByte,
// the NewReader will introduce its own buffering.
type Reader interface {
io.Reader
io.ByteReader
}
// Decompress state.
type decompressor struct {
// Input source.
r Reader
roffset int64
// Huffman decoders for literal/length, distance.
h1, h2 huffmanDecoder
// Length arrays used to define Huffman codes.
bits *[maxNumLit + maxNumDist]int
codebits *[numCodes]int
// Output history, buffer.
dict dictDecoder
// Next step in the decompression,
// and decompression state.
step func(*decompressor)
stepState int
err error
toRead []byte
hl, hd *huffmanDecoder
copyLen int
copyDist int
// Temporary buffer (avoids repeated allocation).
buf [4]byte
// Input bits, in top of b.
b uint32
nb uint
final bool
2016-11-03 22:16:01 +00:00
}
func (f *decompressor) nextBlock() {
for f.nb < 1+2 {
if f.err = f.moreBits(); f.err != nil {
return
}
}
f.final = f.b&1 == 1
f.b >>= 1
typ := f.b & 3
f.b >>= 2
f.nb -= 1 + 2
switch typ {
case 0:
f.dataBlock()
case 1:
// compressed, fixed Huffman tables
f.hl = &fixedHuffmanDecoder
f.hd = nil
f.huffmanBlockDecoder()()
2016-11-03 22:16:01 +00:00
case 2:
// compressed, dynamic Huffman tables
if f.err = f.readHuffman(); f.err != nil {
break
}
f.hl = &f.h1
f.hd = &f.h2
f.huffmanBlockDecoder()()
2016-11-03 22:16:01 +00:00
default:
// 3 is reserved.
if debugDecode {
fmt.Println("reserved data block encountered")
}
2016-11-03 22:16:01 +00:00
f.err = CorruptInputError(f.roffset)
}
}
func (f *decompressor) Read(b []byte) (int, error) {
for {
if len(f.toRead) > 0 {
n := copy(b, f.toRead)
f.toRead = f.toRead[n:]
if len(f.toRead) == 0 {
return n, f.err
}
return n, nil
}
if f.err != nil {
return 0, f.err
}
f.step(f)
if f.err != nil && len(f.toRead) == 0 {
f.toRead = f.dict.readFlush() // Flush what's left in case of error
}
}
}
// Support the io.WriteTo interface for io.Copy and friends.
func (f *decompressor) WriteTo(w io.Writer) (int64, error) {
total := int64(0)
flushed := false
for {
if len(f.toRead) > 0 {
n, err := w.Write(f.toRead)
total += int64(n)
if err != nil {
f.err = err
return total, err
}
if n != len(f.toRead) {
return total, io.ErrShortWrite
}
f.toRead = f.toRead[:0]
}
if f.err != nil && flushed {
if f.err == io.EOF {
return total, nil
}
return total, f.err
}
if f.err == nil {
f.step(f)
}
if len(f.toRead) == 0 && f.err != nil && !flushed {
f.toRead = f.dict.readFlush() // Flush what's left in case of error
flushed = true
}
}
}
func (f *decompressor) Close() error {
if f.err == io.EOF {
return nil
}
return f.err
}
// RFC 1951 section 3.2.7.
// Compression with dynamic Huffman codes
var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
func (f *decompressor) readHuffman() error {
// HLIT[5], HDIST[5], HCLEN[4].
for f.nb < 5+5+4 {
if err := f.moreBits(); err != nil {
return err
}
}
nlit := int(f.b&0x1F) + 257
if nlit > maxNumLit {
if debugDecode {
fmt.Println("nlit > maxNumLit", nlit)
}
2016-11-03 22:16:01 +00:00
return CorruptInputError(f.roffset)
}
f.b >>= 5
ndist := int(f.b&0x1F) + 1
if ndist > maxNumDist {
if debugDecode {
fmt.Println("ndist > maxNumDist", ndist)
}
2016-11-03 22:16:01 +00:00
return CorruptInputError(f.roffset)
}
f.b >>= 5
nclen := int(f.b&0xF) + 4
// numCodes is 19, so nclen is always valid.
f.b >>= 4
f.nb -= 5 + 5 + 4
// (HCLEN+4)*3 bits: code lengths in the magic codeOrder order.
for i := 0; i < nclen; i++ {
for f.nb < 3 {
if err := f.moreBits(); err != nil {
return err
}
}
f.codebits[codeOrder[i]] = int(f.b & 0x7)
f.b >>= 3
f.nb -= 3
}
for i := nclen; i < len(codeOrder); i++ {
f.codebits[codeOrder[i]] = 0
}
if !f.h1.init(f.codebits[0:]) {
if debugDecode {
fmt.Println("init codebits failed")
}
2016-11-03 22:16:01 +00:00
return CorruptInputError(f.roffset)
}
// HLIT + 257 code lengths, HDIST + 1 code lengths,
// using the code length Huffman code.
for i, n := 0, nlit+ndist; i < n; {
x, err := f.huffSym(&f.h1)
if err != nil {
return err
}
if x < 16 {
// Actual length.
f.bits[i] = x
i++
continue
}
// Repeat previous length or zero.
var rep int
var nb uint
var b int
switch x {
default:
return InternalError("unexpected length code")
case 16:
rep = 3
nb = 2
if i == 0 {
if debugDecode {
fmt.Println("i==0")
}
2016-11-03 22:16:01 +00:00
return CorruptInputError(f.roffset)
}
b = f.bits[i-1]
case 17:
rep = 3
nb = 3
b = 0
case 18:
rep = 11
nb = 7
b = 0
}
for f.nb < nb {
if err := f.moreBits(); err != nil {
if debugDecode {
fmt.Println("morebits:", err)
}
2016-11-03 22:16:01 +00:00
return err
}
}
rep += int(f.b & uint32(1<<(nb&regSizeMaskUint32)-1))
f.b >>= nb & regSizeMaskUint32
2016-11-03 22:16:01 +00:00
f.nb -= nb
if i+rep > n {
if debugDecode {
fmt.Println("i+rep > n", i, rep, n)
}
2016-11-03 22:16:01 +00:00
return CorruptInputError(f.roffset)
}
for j := 0; j < rep; j++ {
f.bits[i] = b
i++
}
}
if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {
if debugDecode {
fmt.Println("init2 failed")
}
2016-11-03 22:16:01 +00:00
return CorruptInputError(f.roffset)
}
// As an optimization, we can initialize the maxRead bits to read at a time
2016-11-03 22:16:01 +00:00
// for the HLIT tree to the length of the EOB marker since we know that
// every block must terminate with one. This preserves the property that
// we never read any extra bytes after the end of the DEFLATE stream.
if f.h1.maxRead < f.bits[endBlockMarker] {
f.h1.maxRead = f.bits[endBlockMarker]
}
if !f.final {
// If not the final block, the smallest block possible is
// a predefined table, BTYPE=01, with a single EOB marker.
// This will take up 3 + 7 bits.
f.h1.maxRead += 10
2016-11-03 22:16:01 +00:00
}
return nil
}
// Decode a single Huffman block from f.
// hl and hd are the Huffman states for the lit/length values
// and the distance values, respectively. If hd == nil, using the
// fixed distance encoding associated with fixed Huffman blocks.
func (f *decompressor) huffmanBlockGeneric() {
2016-11-03 22:16:01 +00:00
const (
stateInit = iota // Zero value must be stateInit
stateDict
)
switch f.stepState {
case stateInit:
goto readLiteral
case stateDict:
goto copyHistory
}
readLiteral:
// Read literal and/or (length, distance) according to RFC section 3.2.3.
{
var v int
{
// Inlined v, err := f.huffSym(f.hl)
// Since a huffmanDecoder can be empty or be composed of a degenerate tree
// with single element, huffSym must error on these two edge cases. In both
// cases, the chunks slice will be 0 for the invalid sequence, leading it
// satisfy the n == 0 check below.
n := uint(f.hl.maxRead)
// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
// but is smart enough to keep local variables in registers, so use nb and b,
// inline call to moreBits and reassign b,nb back to f on return.
nb, b := f.nb, f.b
for {
for nb < n {
c, err := f.r.ReadByte()
if err != nil {
f.b = b
f.nb = nb
f.err = noEOF(err)
return
}
f.roffset++
b |= uint32(c) << (nb & regSizeMaskUint32)
nb += 8
}
chunk := f.hl.chunks[b&(huffmanNumChunks-1)]
n = uint(chunk & huffmanCountMask)
if n > huffmanChunkBits {
chunk = f.hl.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&f.hl.linkMask]
n = uint(chunk & huffmanCountMask)
}
if n <= nb {
if n == 0 {
f.b = b
f.nb = nb
if debugDecode {
fmt.Println("huffsym: n==0")
}
f.err = CorruptInputError(f.roffset)
return
}
f.b = b >> (n & regSizeMaskUint32)
f.nb = nb - n
v = int(chunk >> huffmanValueShift)
break
}
}
2016-11-03 22:16:01 +00:00
}
2016-11-03 22:16:01 +00:00
var n uint // number of bits extra
var length int
var err error
2016-11-03 22:16:01 +00:00
switch {
case v < 256:
f.dict.writeByte(byte(v))
if f.dict.availWrite() == 0 {
f.toRead = f.dict.readFlush()
f.step = (*decompressor).huffmanBlockGeneric
2016-11-03 22:16:01 +00:00
f.stepState = stateInit
return
}
goto readLiteral
case v == 256:
f.finishBlock()
return
// otherwise, reference to older data
case v < 265:
length = v - (257 - 3)
n = 0
case v < 269:
length = v*2 - (265*2 - 11)
n = 1
case v < 273:
length = v*4 - (269*4 - 19)
n = 2
case v < 277:
length = v*8 - (273*8 - 35)
n = 3
case v < 281:
length = v*16 - (277*16 - 67)
n = 4
case v < 285:
length = v*32 - (281*32 - 131)
n = 5
case v < maxNumLit:
length = 258
n = 0
default:
if debugDecode {
fmt.Println(v, ">= maxNumLit")
}
2016-11-03 22:16:01 +00:00
f.err = CorruptInputError(f.roffset)
return
}
if n > 0 {
for f.nb < n {
if err = f.moreBits(); err != nil {
if debugDecode {
fmt.Println("morebits n>0:", err)
}
2016-11-03 22:16:01 +00:00
f.err = err
return
}
}
length += int(f.b & uint32(1<<(n&regSizeMaskUint32)-1))
f.b >>= n & regSizeMaskUint32
2016-11-03 22:16:01 +00:00
f.nb -= n
}
var dist uint32
2016-11-03 22:16:01 +00:00
if f.hd == nil {
for f.nb < 5 {
if err = f.moreBits(); err != nil {
if debugDecode {
fmt.Println("morebits f.nb<5:", err)
}
2016-11-03 22:16:01 +00:00
f.err = err
return
}
}
dist = uint32(bits.Reverse8(uint8(f.b & 0x1F << 3)))
2016-11-03 22:16:01 +00:00
f.b >>= 5
f.nb -= 5
} else {
sym, err := f.huffSym(f.hd)
if err != nil {
if debugDecode {
fmt.Println("huffsym:", err)
}
2016-11-03 22:16:01 +00:00
f.err = err
return
}
dist = uint32(sym)
2016-11-03 22:16:01 +00:00
}
switch {
case dist < 4:
dist++
case dist < maxNumDist:
nb := uint(dist-2) >> 1
// have 1 bit in bottom of dist, need nb more.
extra := (dist & 1) << (nb & regSizeMaskUint32)
2016-11-03 22:16:01 +00:00
for f.nb < nb {
if err = f.moreBits(); err != nil {
if debugDecode {
fmt.Println("morebits f.nb<nb:", err)
}
2016-11-03 22:16:01 +00:00
f.err = err
return
}
}
extra |= f.b & uint32(1<<(nb&regSizeMaskUint32)-1)
f.b >>= nb & regSizeMaskUint32
2016-11-03 22:16:01 +00:00
f.nb -= nb
dist = 1<<((nb+1)&regSizeMaskUint32) + 1 + extra
2016-11-03 22:16:01 +00:00
default:
if debugDecode {
fmt.Println("dist too big:", dist, maxNumDist)
}
2016-11-03 22:16:01 +00:00
f.err = CorruptInputError(f.roffset)
return
}
// No check on length; encoding can be prescient.
if dist > uint32(f.dict.histSize()) {
if debugDecode {
fmt.Println("dist > f.dict.histSize():", dist, f.dict.histSize())
}
2016-11-03 22:16:01 +00:00
f.err = CorruptInputError(f.roffset)
return
}
f.copyLen, f.copyDist = length, int(dist)
2016-11-03 22:16:01 +00:00
goto copyHistory
}
copyHistory:
// Perform a backwards copy according to RFC section 3.2.3.
{
cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen)
if cnt == 0 {
cnt = f.dict.writeCopy(f.copyDist, f.copyLen)
}
f.copyLen -= cnt
if f.dict.availWrite() == 0 || f.copyLen > 0 {
f.toRead = f.dict.readFlush()
f.step = (*decompressor).huffmanBlockGeneric // We need to continue this work
2016-11-03 22:16:01 +00:00
f.stepState = stateDict
return
}
goto readLiteral
}
}
// Copy a single uncompressed data block from input to output.
func (f *decompressor) dataBlock() {
// Uncompressed.
// Discard current half-byte.
left := (f.nb) & 7
f.nb -= left
f.b >>= left
offBytes := f.nb >> 3
// Unfilled values will be overwritten.
f.buf[0] = uint8(f.b)
f.buf[1] = uint8(f.b >> 8)
f.buf[2] = uint8(f.b >> 16)
f.buf[3] = uint8(f.b >> 24)
f.roffset += int64(offBytes)
f.nb, f.b = 0, 0
2016-11-03 22:16:01 +00:00
// Length then ones-complement of length.
nr, err := io.ReadFull(f.r, f.buf[offBytes:4])
2016-11-03 22:16:01 +00:00
f.roffset += int64(nr)
if err != nil {
f.err = noEOF(err)
2016-11-03 22:16:01 +00:00
return
}
n := uint16(f.buf[0]) | uint16(f.buf[1])<<8
nn := uint16(f.buf[2]) | uint16(f.buf[3])<<8
if nn != ^n {
if debugDecode {
ncomp := ^n
fmt.Println("uint16(nn) != uint16(^n)", nn, ncomp)
}
2016-11-03 22:16:01 +00:00
f.err = CorruptInputError(f.roffset)
return
}
if n == 0 {
f.toRead = f.dict.readFlush()
f.finishBlock()
return
}
f.copyLen = int(n)
2016-11-03 22:16:01 +00:00
f.copyData()
}
// copyData copies f.copyLen bytes from the underlying reader into f.hist.
// It pauses for reads when f.hist is full.
func (f *decompressor) copyData() {
buf := f.dict.writeSlice()
if len(buf) > f.copyLen {
buf = buf[:f.copyLen]
}
cnt, err := io.ReadFull(f.r, buf)
f.roffset += int64(cnt)
f.copyLen -= cnt
f.dict.writeMark(cnt)
if err != nil {
f.err = noEOF(err)
2016-11-03 22:16:01 +00:00
return
}
if f.dict.availWrite() == 0 || f.copyLen > 0 {
f.toRead = f.dict.readFlush()
f.step = (*decompressor).copyData
return
}
f.finishBlock()
}
func (f *decompressor) finishBlock() {
if f.final {
if f.dict.availRead() > 0 {
f.toRead = f.dict.readFlush()
}
f.err = io.EOF
}
f.step = (*decompressor).nextBlock
}
// noEOF returns err, unless err == io.EOF, in which case it returns io.ErrUnexpectedEOF.
func noEOF(e error) error {
if e == io.EOF {
return io.ErrUnexpectedEOF
}
return e
}
2016-11-03 22:16:01 +00:00
func (f *decompressor) moreBits() error {
c, err := f.r.ReadByte()
if err != nil {
return noEOF(err)
2016-11-03 22:16:01 +00:00
}
f.roffset++
f.b |= uint32(c) << (f.nb & regSizeMaskUint32)
2016-11-03 22:16:01 +00:00
f.nb += 8
return nil
}
// Read the next Huffman-encoded symbol from f according to h.
func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {
// Since a huffmanDecoder can be empty or be composed of a degenerate tree
// with single element, huffSym must error on these two edge cases. In both
// cases, the chunks slice will be 0 for the invalid sequence, leading it
// satisfy the n == 0 check below.
n := uint(h.maxRead)
// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
// but is smart enough to keep local variables in registers, so use nb and b,
// inline call to moreBits and reassign b,nb back to f on return.
nb, b := f.nb, f.b
2016-11-03 22:16:01 +00:00
for {
for nb < n {
c, err := f.r.ReadByte()
if err != nil {
f.b = b
f.nb = nb
return 0, noEOF(err)
2016-11-03 22:16:01 +00:00
}
f.roffset++
b |= uint32(c) << (nb & regSizeMaskUint32)
nb += 8
2016-11-03 22:16:01 +00:00
}
chunk := h.chunks[b&(huffmanNumChunks-1)]
2016-11-03 22:16:01 +00:00
n = uint(chunk & huffmanCountMask)
if n > huffmanChunkBits {
chunk = h.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&h.linkMask]
2016-11-03 22:16:01 +00:00
n = uint(chunk & huffmanCountMask)
}
if n <= nb {
2016-11-03 22:16:01 +00:00
if n == 0 {
f.b = b
f.nb = nb
if debugDecode {
fmt.Println("huffsym: n==0")
}
2016-11-03 22:16:01 +00:00
f.err = CorruptInputError(f.roffset)
return 0, f.err
}
f.b = b >> (n & regSizeMaskUint32)
f.nb = nb - n
2016-11-03 22:16:01 +00:00
return int(chunk >> huffmanValueShift), nil
}
}
}
func makeReader(r io.Reader) Reader {
if rr, ok := r.(Reader); ok {
return rr
}
return bufio.NewReader(r)
}
func fixedHuffmanDecoderInit() {
fixedOnce.Do(func() {
// These come from the RFC section 3.2.6.
var bits [288]int
for i := 0; i < 144; i++ {
bits[i] = 8
}
for i := 144; i < 256; i++ {
bits[i] = 9
}
for i := 256; i < 280; i++ {
bits[i] = 7
}
for i := 280; i < 288; i++ {
bits[i] = 8
}
fixedHuffmanDecoder.init(bits[:])
})
}
func (f *decompressor) Reset(r io.Reader, dict []byte) error {
*f = decompressor{
r: makeReader(r),
bits: f.bits,
codebits: f.codebits,
h1: f.h1,
h2: f.h2,
2016-11-03 22:16:01 +00:00
dict: f.dict,
step: (*decompressor).nextBlock,
}
f.dict.init(maxMatchOffset, dict)
return nil
}
// NewReader returns a new ReadCloser that can be used
// to read the uncompressed version of r.
// If r does not also implement io.ByteReader,
// the decompressor may read more data than necessary from r.
// It is the caller's responsibility to call Close on the ReadCloser
// when finished reading.
//
// The ReadCloser returned by NewReader also implements Resetter.
func NewReader(r io.Reader) io.ReadCloser {
fixedHuffmanDecoderInit()
var f decompressor
f.r = makeReader(r)
f.bits = new([maxNumLit + maxNumDist]int)
f.codebits = new([numCodes]int)
f.step = (*decompressor).nextBlock
f.dict.init(maxMatchOffset, nil)
return &f
}
// NewReaderDict is like NewReader but initializes the reader
// with a preset dictionary. The returned Reader behaves as if
// the uncompressed data stream started with the given dictionary,
// which has already been read. NewReaderDict is typically used
// to read data compressed by NewWriterDict.
//
// The ReadCloser returned by NewReader also implements Resetter.
func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
fixedHuffmanDecoderInit()
var f decompressor
f.r = makeReader(r)
f.bits = new([maxNumLit + maxNumDist]int)
f.codebits = new([numCodes]int)
f.step = (*decompressor).nextBlock
f.dict.init(maxMatchOffset, dict)
return &f
}