mirror of
https://github.com/go-gitea/gitea
synced 2025-01-10 01:34:43 +00:00
434 lines
14 KiB
Go
434 lines
14 KiB
Go
|
package brotli
|
||
|
|
||
|
import "math"
|
||
|
|
||
|
/* Copyright 2013 Google Inc. All Rights Reserved.
|
||
|
|
||
|
Distributed under MIT license.
|
||
|
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
|
||
|
*/
|
||
|
|
||
|
func initialEntropyCodesDistance(data []uint16, length uint, stride uint, num_histograms uint, histograms []histogramDistance) {
|
||
|
var seed uint32 = 7
|
||
|
var block_length uint = length / num_histograms
|
||
|
var i uint
|
||
|
clearHistogramsDistance(histograms, num_histograms)
|
||
|
for i = 0; i < num_histograms; i++ {
|
||
|
var pos uint = length * i / num_histograms
|
||
|
if i != 0 {
|
||
|
pos += uint(myRand(&seed) % uint32(block_length))
|
||
|
}
|
||
|
|
||
|
if pos+stride >= length {
|
||
|
pos = length - stride - 1
|
||
|
}
|
||
|
|
||
|
histogramAddVectorDistance(&histograms[i], data[pos:], stride)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func randomSampleDistance(seed *uint32, data []uint16, length uint, stride uint, sample *histogramDistance) {
|
||
|
var pos uint = 0
|
||
|
if stride >= length {
|
||
|
stride = length
|
||
|
} else {
|
||
|
pos = uint(myRand(seed) % uint32(length-stride+1))
|
||
|
}
|
||
|
|
||
|
histogramAddVectorDistance(sample, data[pos:], stride)
|
||
|
}
|
||
|
|
||
|
func refineEntropyCodesDistance(data []uint16, length uint, stride uint, num_histograms uint, histograms []histogramDistance) {
|
||
|
var iters uint = kIterMulForRefining*length/stride + kMinItersForRefining
|
||
|
var seed uint32 = 7
|
||
|
var iter uint
|
||
|
iters = ((iters + num_histograms - 1) / num_histograms) * num_histograms
|
||
|
for iter = 0; iter < iters; iter++ {
|
||
|
var sample histogramDistance
|
||
|
histogramClearDistance(&sample)
|
||
|
randomSampleDistance(&seed, data, length, stride, &sample)
|
||
|
histogramAddHistogramDistance(&histograms[iter%num_histograms], &sample)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Assigns a block id from the range [0, num_histograms) to each data element
|
||
|
in data[0..length) and fills in block_id[0..length) with the assigned values.
|
||
|
Returns the number of blocks, i.e. one plus the number of block switches. */
|
||
|
func findBlocksDistance(data []uint16, length uint, block_switch_bitcost float64, num_histograms uint, histograms []histogramDistance, insert_cost []float64, cost []float64, switch_signal []byte, block_id []byte) uint {
|
||
|
var data_size uint = histogramDataSizeDistance()
|
||
|
var bitmaplen uint = (num_histograms + 7) >> 3
|
||
|
var num_blocks uint = 1
|
||
|
var i uint
|
||
|
var j uint
|
||
|
assert(num_histograms <= 256)
|
||
|
if num_histograms <= 1 {
|
||
|
for i = 0; i < length; i++ {
|
||
|
block_id[i] = 0
|
||
|
}
|
||
|
|
||
|
return 1
|
||
|
}
|
||
|
|
||
|
for i := 0; i < int(data_size*num_histograms); i++ {
|
||
|
insert_cost[i] = 0
|
||
|
}
|
||
|
for i = 0; i < num_histograms; i++ {
|
||
|
insert_cost[i] = fastLog2(uint(uint32(histograms[i].total_count_)))
|
||
|
}
|
||
|
|
||
|
for i = data_size; i != 0; {
|
||
|
i--
|
||
|
for j = 0; j < num_histograms; j++ {
|
||
|
insert_cost[i*num_histograms+j] = insert_cost[j] - bitCost(uint(histograms[j].data_[i]))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for i := 0; i < int(num_histograms); i++ {
|
||
|
cost[i] = 0
|
||
|
}
|
||
|
for i := 0; i < int(length*bitmaplen); i++ {
|
||
|
switch_signal[i] = 0
|
||
|
}
|
||
|
|
||
|
/* After each iteration of this loop, cost[k] will contain the difference
|
||
|
between the minimum cost of arriving at the current byte position using
|
||
|
entropy code k, and the minimum cost of arriving at the current byte
|
||
|
position. This difference is capped at the block switch cost, and if it
|
||
|
reaches block switch cost, it means that when we trace back from the last
|
||
|
position, we need to switch here. */
|
||
|
for i = 0; i < length; i++ {
|
||
|
var byte_ix uint = i
|
||
|
var ix uint = byte_ix * bitmaplen
|
||
|
var insert_cost_ix uint = uint(data[byte_ix]) * num_histograms
|
||
|
var min_cost float64 = 1e99
|
||
|
var block_switch_cost float64 = block_switch_bitcost
|
||
|
var k uint
|
||
|
for k = 0; k < num_histograms; k++ {
|
||
|
/* We are coding the symbol in data[byte_ix] with entropy code k. */
|
||
|
cost[k] += insert_cost[insert_cost_ix+k]
|
||
|
|
||
|
if cost[k] < min_cost {
|
||
|
min_cost = cost[k]
|
||
|
block_id[byte_ix] = byte(k)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* More blocks for the beginning. */
|
||
|
if byte_ix < 2000 {
|
||
|
block_switch_cost *= 0.77 + 0.07*float64(byte_ix)/2000
|
||
|
}
|
||
|
|
||
|
for k = 0; k < num_histograms; k++ {
|
||
|
cost[k] -= min_cost
|
||
|
if cost[k] >= block_switch_cost {
|
||
|
var mask byte = byte(1 << (k & 7))
|
||
|
cost[k] = block_switch_cost
|
||
|
assert(k>>3 < bitmaplen)
|
||
|
switch_signal[ix+(k>>3)] |= mask
|
||
|
/* Trace back from the last position and switch at the marked places. */
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
var byte_ix uint = length - 1
|
||
|
var ix uint = byte_ix * bitmaplen
|
||
|
var cur_id byte = block_id[byte_ix]
|
||
|
for byte_ix > 0 {
|
||
|
var mask byte = byte(1 << (cur_id & 7))
|
||
|
assert(uint(cur_id)>>3 < bitmaplen)
|
||
|
byte_ix--
|
||
|
ix -= bitmaplen
|
||
|
if switch_signal[ix+uint(cur_id>>3)]&mask != 0 {
|
||
|
if cur_id != block_id[byte_ix] {
|
||
|
cur_id = block_id[byte_ix]
|
||
|
num_blocks++
|
||
|
}
|
||
|
}
|
||
|
|
||
|
block_id[byte_ix] = cur_id
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return num_blocks
|
||
|
}
|
||
|
|
||
|
var remapBlockIdsDistance_kInvalidId uint16 = 256
|
||
|
|
||
|
func remapBlockIdsDistance(block_ids []byte, length uint, new_id []uint16, num_histograms uint) uint {
|
||
|
var next_id uint16 = 0
|
||
|
var i uint
|
||
|
for i = 0; i < num_histograms; i++ {
|
||
|
new_id[i] = remapBlockIdsDistance_kInvalidId
|
||
|
}
|
||
|
|
||
|
for i = 0; i < length; i++ {
|
||
|
assert(uint(block_ids[i]) < num_histograms)
|
||
|
if new_id[block_ids[i]] == remapBlockIdsDistance_kInvalidId {
|
||
|
new_id[block_ids[i]] = next_id
|
||
|
next_id++
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for i = 0; i < length; i++ {
|
||
|
block_ids[i] = byte(new_id[block_ids[i]])
|
||
|
assert(uint(block_ids[i]) < num_histograms)
|
||
|
}
|
||
|
|
||
|
assert(uint(next_id) <= num_histograms)
|
||
|
return uint(next_id)
|
||
|
}
|
||
|
|
||
|
func buildBlockHistogramsDistance(data []uint16, length uint, block_ids []byte, num_histograms uint, histograms []histogramDistance) {
|
||
|
var i uint
|
||
|
clearHistogramsDistance(histograms, num_histograms)
|
||
|
for i = 0; i < length; i++ {
|
||
|
histogramAddDistance(&histograms[block_ids[i]], uint(data[i]))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
var clusterBlocksDistance_kInvalidIndex uint32 = math.MaxUint32
|
||
|
|
||
|
func clusterBlocksDistance(data []uint16, length uint, num_blocks uint, block_ids []byte, split *blockSplit) {
|
||
|
var histogram_symbols []uint32 = make([]uint32, num_blocks)
|
||
|
var block_lengths []uint32 = make([]uint32, num_blocks)
|
||
|
var expected_num_clusters uint = clustersPerBatch * (num_blocks + histogramsPerBatch - 1) / histogramsPerBatch
|
||
|
var all_histograms_size uint = 0
|
||
|
var all_histograms_capacity uint = expected_num_clusters
|
||
|
var all_histograms []histogramDistance = make([]histogramDistance, all_histograms_capacity)
|
||
|
var cluster_size_size uint = 0
|
||
|
var cluster_size_capacity uint = expected_num_clusters
|
||
|
var cluster_size []uint32 = make([]uint32, cluster_size_capacity)
|
||
|
var num_clusters uint = 0
|
||
|
var histograms []histogramDistance = make([]histogramDistance, brotli_min_size_t(num_blocks, histogramsPerBatch))
|
||
|
var max_num_pairs uint = histogramsPerBatch * histogramsPerBatch / 2
|
||
|
var pairs_capacity uint = max_num_pairs + 1
|
||
|
var pairs []histogramPair = make([]histogramPair, pairs_capacity)
|
||
|
var pos uint = 0
|
||
|
var clusters []uint32
|
||
|
var num_final_clusters uint
|
||
|
var new_index []uint32
|
||
|
var i uint
|
||
|
var sizes = [histogramsPerBatch]uint32{0}
|
||
|
var new_clusters = [histogramsPerBatch]uint32{0}
|
||
|
var symbols = [histogramsPerBatch]uint32{0}
|
||
|
var remap = [histogramsPerBatch]uint32{0}
|
||
|
|
||
|
for i := 0; i < int(num_blocks); i++ {
|
||
|
block_lengths[i] = 0
|
||
|
}
|
||
|
{
|
||
|
var block_idx uint = 0
|
||
|
for i = 0; i < length; i++ {
|
||
|
assert(block_idx < num_blocks)
|
||
|
block_lengths[block_idx]++
|
||
|
if i+1 == length || block_ids[i] != block_ids[i+1] {
|
||
|
block_idx++
|
||
|
}
|
||
|
}
|
||
|
|
||
|
assert(block_idx == num_blocks)
|
||
|
}
|
||
|
|
||
|
for i = 0; i < num_blocks; i += histogramsPerBatch {
|
||
|
var num_to_combine uint = brotli_min_size_t(num_blocks-i, histogramsPerBatch)
|
||
|
var num_new_clusters uint
|
||
|
var j uint
|
||
|
for j = 0; j < num_to_combine; j++ {
|
||
|
var k uint
|
||
|
histogramClearDistance(&histograms[j])
|
||
|
for k = 0; uint32(k) < block_lengths[i+j]; k++ {
|
||
|
histogramAddDistance(&histograms[j], uint(data[pos]))
|
||
|
pos++
|
||
|
}
|
||
|
|
||
|
histograms[j].bit_cost_ = populationCostDistance(&histograms[j])
|
||
|
new_clusters[j] = uint32(j)
|
||
|
symbols[j] = uint32(j)
|
||
|
sizes[j] = 1
|
||
|
}
|
||
|
|
||
|
num_new_clusters = histogramCombineDistance(histograms, sizes[:], symbols[:], new_clusters[:], []histogramPair(pairs), num_to_combine, num_to_combine, histogramsPerBatch, max_num_pairs)
|
||
|
if all_histograms_capacity < (all_histograms_size + num_new_clusters) {
|
||
|
var _new_size uint
|
||
|
if all_histograms_capacity == 0 {
|
||
|
_new_size = all_histograms_size + num_new_clusters
|
||
|
} else {
|
||
|
_new_size = all_histograms_capacity
|
||
|
}
|
||
|
var new_array []histogramDistance
|
||
|
for _new_size < (all_histograms_size + num_new_clusters) {
|
||
|
_new_size *= 2
|
||
|
}
|
||
|
new_array = make([]histogramDistance, _new_size)
|
||
|
if all_histograms_capacity != 0 {
|
||
|
copy(new_array, all_histograms[:all_histograms_capacity])
|
||
|
}
|
||
|
|
||
|
all_histograms = new_array
|
||
|
all_histograms_capacity = _new_size
|
||
|
}
|
||
|
|
||
|
brotli_ensure_capacity_uint32_t(&cluster_size, &cluster_size_capacity, cluster_size_size+num_new_clusters)
|
||
|
for j = 0; j < num_new_clusters; j++ {
|
||
|
all_histograms[all_histograms_size] = histograms[new_clusters[j]]
|
||
|
all_histograms_size++
|
||
|
cluster_size[cluster_size_size] = sizes[new_clusters[j]]
|
||
|
cluster_size_size++
|
||
|
remap[new_clusters[j]] = uint32(j)
|
||
|
}
|
||
|
|
||
|
for j = 0; j < num_to_combine; j++ {
|
||
|
histogram_symbols[i+j] = uint32(num_clusters) + remap[symbols[j]]
|
||
|
}
|
||
|
|
||
|
num_clusters += num_new_clusters
|
||
|
assert(num_clusters == cluster_size_size)
|
||
|
assert(num_clusters == all_histograms_size)
|
||
|
}
|
||
|
|
||
|
histograms = nil
|
||
|
|
||
|
max_num_pairs = brotli_min_size_t(64*num_clusters, (num_clusters/2)*num_clusters)
|
||
|
if pairs_capacity < max_num_pairs+1 {
|
||
|
pairs = nil
|
||
|
pairs = make([]histogramPair, (max_num_pairs + 1))
|
||
|
}
|
||
|
|
||
|
clusters = make([]uint32, num_clusters)
|
||
|
for i = 0; i < num_clusters; i++ {
|
||
|
clusters[i] = uint32(i)
|
||
|
}
|
||
|
|
||
|
num_final_clusters = histogramCombineDistance(all_histograms, cluster_size, histogram_symbols, clusters, pairs, num_clusters, num_blocks, maxNumberOfBlockTypes, max_num_pairs)
|
||
|
pairs = nil
|
||
|
cluster_size = nil
|
||
|
|
||
|
new_index = make([]uint32, num_clusters)
|
||
|
for i = 0; i < num_clusters; i++ {
|
||
|
new_index[i] = clusterBlocksDistance_kInvalidIndex
|
||
|
}
|
||
|
pos = 0
|
||
|
{
|
||
|
var next_index uint32 = 0
|
||
|
for i = 0; i < num_blocks; i++ {
|
||
|
var histo histogramDistance
|
||
|
var j uint
|
||
|
var best_out uint32
|
||
|
var best_bits float64
|
||
|
histogramClearDistance(&histo)
|
||
|
for j = 0; uint32(j) < block_lengths[i]; j++ {
|
||
|
histogramAddDistance(&histo, uint(data[pos]))
|
||
|
pos++
|
||
|
}
|
||
|
|
||
|
if i == 0 {
|
||
|
best_out = histogram_symbols[0]
|
||
|
} else {
|
||
|
best_out = histogram_symbols[i-1]
|
||
|
}
|
||
|
best_bits = histogramBitCostDistanceDistance(&histo, &all_histograms[best_out])
|
||
|
for j = 0; j < num_final_clusters; j++ {
|
||
|
var cur_bits float64 = histogramBitCostDistanceDistance(&histo, &all_histograms[clusters[j]])
|
||
|
if cur_bits < best_bits {
|
||
|
best_bits = cur_bits
|
||
|
best_out = clusters[j]
|
||
|
}
|
||
|
}
|
||
|
|
||
|
histogram_symbols[i] = best_out
|
||
|
if new_index[best_out] == clusterBlocksDistance_kInvalidIndex {
|
||
|
new_index[best_out] = next_index
|
||
|
next_index++
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
clusters = nil
|
||
|
all_histograms = nil
|
||
|
brotli_ensure_capacity_uint8_t(&split.types, &split.types_alloc_size, num_blocks)
|
||
|
brotli_ensure_capacity_uint32_t(&split.lengths, &split.lengths_alloc_size, num_blocks)
|
||
|
{
|
||
|
var cur_length uint32 = 0
|
||
|
var block_idx uint = 0
|
||
|
var max_type byte = 0
|
||
|
for i = 0; i < num_blocks; i++ {
|
||
|
cur_length += block_lengths[i]
|
||
|
if i+1 == num_blocks || histogram_symbols[i] != histogram_symbols[i+1] {
|
||
|
var id byte = byte(new_index[histogram_symbols[i]])
|
||
|
split.types[block_idx] = id
|
||
|
split.lengths[block_idx] = cur_length
|
||
|
max_type = brotli_max_uint8_t(max_type, id)
|
||
|
cur_length = 0
|
||
|
block_idx++
|
||
|
}
|
||
|
}
|
||
|
|
||
|
split.num_blocks = block_idx
|
||
|
split.num_types = uint(max_type) + 1
|
||
|
}
|
||
|
|
||
|
new_index = nil
|
||
|
block_lengths = nil
|
||
|
histogram_symbols = nil
|
||
|
}
|
||
|
|
||
|
func splitByteVectorDistance(data []uint16, length uint, literals_per_histogram uint, max_histograms uint, sampling_stride_length uint, block_switch_cost float64, params *encoderParams, split *blockSplit) {
|
||
|
var data_size uint = histogramDataSizeDistance()
|
||
|
var num_histograms uint = length/literals_per_histogram + 1
|
||
|
var histograms []histogramDistance
|
||
|
if num_histograms > max_histograms {
|
||
|
num_histograms = max_histograms
|
||
|
}
|
||
|
|
||
|
if length == 0 {
|
||
|
split.num_types = 1
|
||
|
return
|
||
|
} else if length < kMinLengthForBlockSplitting {
|
||
|
brotli_ensure_capacity_uint8_t(&split.types, &split.types_alloc_size, split.num_blocks+1)
|
||
|
brotli_ensure_capacity_uint32_t(&split.lengths, &split.lengths_alloc_size, split.num_blocks+1)
|
||
|
split.num_types = 1
|
||
|
split.types[split.num_blocks] = 0
|
||
|
split.lengths[split.num_blocks] = uint32(length)
|
||
|
split.num_blocks++
|
||
|
return
|
||
|
}
|
||
|
|
||
|
histograms = make([]histogramDistance, num_histograms)
|
||
|
|
||
|
/* Find good entropy codes. */
|
||
|
initialEntropyCodesDistance(data, length, sampling_stride_length, num_histograms, histograms)
|
||
|
|
||
|
refineEntropyCodesDistance(data, length, sampling_stride_length, num_histograms, histograms)
|
||
|
{
|
||
|
var block_ids []byte = make([]byte, length)
|
||
|
var num_blocks uint = 0
|
||
|
var bitmaplen uint = (num_histograms + 7) >> 3
|
||
|
var insert_cost []float64 = make([]float64, (data_size * num_histograms))
|
||
|
var cost []float64 = make([]float64, num_histograms)
|
||
|
var switch_signal []byte = make([]byte, (length * bitmaplen))
|
||
|
var new_id []uint16 = make([]uint16, num_histograms)
|
||
|
var iters uint
|
||
|
if params.quality < hqZopflificationQuality {
|
||
|
iters = 3
|
||
|
} else {
|
||
|
iters = 10
|
||
|
}
|
||
|
/* Find a good path through literals with the good entropy codes. */
|
||
|
|
||
|
var i uint
|
||
|
for i = 0; i < iters; i++ {
|
||
|
num_blocks = findBlocksDistance(data, length, block_switch_cost, num_histograms, histograms, insert_cost, cost, switch_signal, block_ids)
|
||
|
num_histograms = remapBlockIdsDistance(block_ids, length, new_id, num_histograms)
|
||
|
buildBlockHistogramsDistance(data, length, block_ids, num_histograms, histograms)
|
||
|
}
|
||
|
|
||
|
insert_cost = nil
|
||
|
cost = nil
|
||
|
switch_signal = nil
|
||
|
new_id = nil
|
||
|
histograms = nil
|
||
|
clusterBlocksDistance(data, length, num_blocks, block_ids, split)
|
||
|
block_ids = nil
|
||
|
}
|
||
|
}
|