mirror of
https://github.com/go-gitea/gitea
synced 2025-07-15 23:17:19 +00:00
Update gitea-vet to v0.2.1 (#12282)
* change to new code location * vendor * tagged version v0.2.0 * gitea-vet v0.2.1 Co-authored-by: techknowlogick <techknowlogick@gitea.io>
This commit is contained in:
168
vendor/golang.org/x/tools/internal/lsp/fuzzy/input.go
generated
vendored
Normal file
168
vendor/golang.org/x/tools/internal/lsp/fuzzy/input.go
generated
vendored
Normal file
@@ -0,0 +1,168 @@
|
||||
// Copyright 2019 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package fuzzy
|
||||
|
||||
import (
|
||||
"unicode"
|
||||
)
|
||||
|
||||
// RuneRole specifies the role of a rune in the context of an input.
|
||||
type RuneRole byte
|
||||
|
||||
const (
|
||||
// RNone specifies a rune without any role in the input (i.e., whitespace/non-ASCII).
|
||||
RNone RuneRole = iota
|
||||
// RSep specifies a rune with the role of segment separator.
|
||||
RSep
|
||||
// RTail specifies a rune which is a lower-case tail in a word in the input.
|
||||
RTail
|
||||
// RUCTail specifies a rune which is an upper-case tail in a word in the input.
|
||||
RUCTail
|
||||
// RHead specifies a rune which is the first character in a word in the input.
|
||||
RHead
|
||||
)
|
||||
|
||||
// RuneRoles detects the roles of each byte rune in an input string and stores it in the output
|
||||
// slice. The rune role depends on the input type. Stops when it parsed all the runes in the string
|
||||
// or when it filled the output. If output is nil, then it gets created.
|
||||
func RuneRoles(str string, reuse []RuneRole) []RuneRole {
|
||||
var output []RuneRole
|
||||
if cap(reuse) < len(str) {
|
||||
output = make([]RuneRole, 0, len(str))
|
||||
} else {
|
||||
output = reuse[:0]
|
||||
}
|
||||
|
||||
prev, prev2 := rtNone, rtNone
|
||||
for i := 0; i < len(str); i++ {
|
||||
r := rune(str[i])
|
||||
|
||||
role := RNone
|
||||
|
||||
curr := rtLower
|
||||
if str[i] <= unicode.MaxASCII {
|
||||
curr = runeType(rt[str[i]] - '0')
|
||||
}
|
||||
|
||||
if curr == rtLower {
|
||||
if prev == rtNone || prev == rtPunct {
|
||||
role = RHead
|
||||
} else {
|
||||
role = RTail
|
||||
}
|
||||
} else if curr == rtUpper {
|
||||
role = RHead
|
||||
|
||||
if prev == rtUpper {
|
||||
// This and previous characters are both upper case.
|
||||
|
||||
if i+1 == len(str) {
|
||||
// This is last character, previous was also uppercase -> this is UCTail
|
||||
// i.e., (current char is C): aBC / BC / ABC
|
||||
role = RUCTail
|
||||
}
|
||||
}
|
||||
} else if curr == rtPunct {
|
||||
switch r {
|
||||
case '.', ':':
|
||||
role = RSep
|
||||
}
|
||||
}
|
||||
if curr != rtLower {
|
||||
if i > 1 && output[i-1] == RHead && prev2 == rtUpper && (output[i-2] == RHead || output[i-2] == RUCTail) {
|
||||
// The previous two characters were uppercase. The current one is not a lower case, so the
|
||||
// previous one can't be a HEAD. Make it a UCTail.
|
||||
// i.e., (last char is current char - B must be a UCTail): ABC / ZABC / AB.
|
||||
output[i-1] = RUCTail
|
||||
}
|
||||
}
|
||||
|
||||
output = append(output, role)
|
||||
prev2 = prev
|
||||
prev = curr
|
||||
}
|
||||
return output
|
||||
}
|
||||
|
||||
type runeType byte
|
||||
|
||||
const (
|
||||
rtNone runeType = iota
|
||||
rtPunct
|
||||
rtLower
|
||||
rtUpper
|
||||
)
|
||||
|
||||
const rt = "00000000000000000000000000000000000000000000001122222222221000000333333333333333333333333330000002222222222222222222222222200000"
|
||||
|
||||
// LastSegment returns the substring representing the last segment from the input, where each
|
||||
// byte has an associated RuneRole in the roles slice. This makes sense only for inputs of Symbol
|
||||
// or Filename type.
|
||||
func LastSegment(input string, roles []RuneRole) string {
|
||||
// Exclude ending separators.
|
||||
end := len(input) - 1
|
||||
for end >= 0 && roles[end] == RSep {
|
||||
end--
|
||||
}
|
||||
if end < 0 {
|
||||
return ""
|
||||
}
|
||||
|
||||
start := end - 1
|
||||
for start >= 0 && roles[start] != RSep {
|
||||
start--
|
||||
}
|
||||
|
||||
return input[start+1 : end+1]
|
||||
}
|
||||
|
||||
// ToLower transforms the input string to lower case, which is stored in the output byte slice.
|
||||
// The lower casing considers only ASCII values - non ASCII values are left unmodified.
|
||||
// Stops when parsed all input or when it filled the output slice. If output is nil, then it gets
|
||||
// created.
|
||||
func ToLower(input string, reuse []byte) []byte {
|
||||
output := reuse
|
||||
if cap(reuse) < len(input) {
|
||||
output = make([]byte, len(input))
|
||||
}
|
||||
|
||||
for i := 0; i < len(input); i++ {
|
||||
r := rune(input[i])
|
||||
if r <= unicode.MaxASCII {
|
||||
if 'A' <= r && r <= 'Z' {
|
||||
r += 'a' - 'A'
|
||||
}
|
||||
}
|
||||
output[i] = byte(r)
|
||||
}
|
||||
return output[:len(input)]
|
||||
}
|
||||
|
||||
// WordConsumer defines a consumer for a word delimited by the [start,end) byte offsets in an input
|
||||
// (start is inclusive, end is exclusive).
|
||||
type WordConsumer func(start, end int)
|
||||
|
||||
// Words find word delimiters in an input based on its bytes' mappings to rune roles. The offset
|
||||
// delimiters for each word are fed to the provided consumer function.
|
||||
func Words(roles []RuneRole, consume WordConsumer) {
|
||||
var wordStart int
|
||||
for i, r := range roles {
|
||||
switch r {
|
||||
case RUCTail, RTail:
|
||||
case RHead, RNone, RSep:
|
||||
if i != wordStart {
|
||||
consume(wordStart, i)
|
||||
}
|
||||
wordStart = i
|
||||
if r != RHead {
|
||||
// Skip this character.
|
||||
wordStart = i + 1
|
||||
}
|
||||
}
|
||||
}
|
||||
if wordStart != len(roles) {
|
||||
consume(wordStart, len(roles))
|
||||
}
|
||||
}
|
398
vendor/golang.org/x/tools/internal/lsp/fuzzy/matcher.go
generated
vendored
Normal file
398
vendor/golang.org/x/tools/internal/lsp/fuzzy/matcher.go
generated
vendored
Normal file
@@ -0,0 +1,398 @@
|
||||
// Copyright 2019 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package fuzzy implements a fuzzy matching algorithm.
|
||||
package fuzzy
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
)
|
||||
|
||||
const (
|
||||
// MaxInputSize is the maximum size of the input scored against the fuzzy matcher. Longer inputs
|
||||
// will be truncated to this size.
|
||||
MaxInputSize = 127
|
||||
// MaxPatternSize is the maximum size of the pattern used to construct the fuzzy matcher. Longer
|
||||
// inputs are truncated to this size.
|
||||
MaxPatternSize = 63
|
||||
)
|
||||
|
||||
type scoreVal int
|
||||
|
||||
func (s scoreVal) val() int {
|
||||
return int(s) >> 1
|
||||
}
|
||||
|
||||
func (s scoreVal) prevK() int {
|
||||
return int(s) & 1
|
||||
}
|
||||
|
||||
func score(val int, prevK int /*0 or 1*/) scoreVal {
|
||||
return scoreVal(val<<1 + prevK)
|
||||
}
|
||||
|
||||
// Matcher implements a fuzzy matching algorithm for scoring candidates against a pattern.
|
||||
// The matcher does not support parallel usage.
|
||||
type Matcher struct {
|
||||
pattern string
|
||||
patternLower []byte // lower-case version of the pattern
|
||||
patternShort []byte // first characters of the pattern
|
||||
caseSensitive bool // set if the pattern is mix-cased
|
||||
|
||||
patternRoles []RuneRole // the role of each character in the pattern
|
||||
roles []RuneRole // the role of each character in the tested string
|
||||
|
||||
scores [MaxInputSize + 1][MaxPatternSize + 1][2]scoreVal
|
||||
|
||||
scoreScale float32
|
||||
|
||||
lastCandidateLen int // in bytes
|
||||
lastCandidateMatched bool
|
||||
|
||||
// Here we save the last candidate in lower-case. This is basically a byte slice we reuse for
|
||||
// performance reasons, so the slice is not reallocated for every candidate.
|
||||
lowerBuf [MaxInputSize]byte
|
||||
rolesBuf [MaxInputSize]RuneRole
|
||||
}
|
||||
|
||||
func (m *Matcher) bestK(i, j int) int {
|
||||
if m.scores[i][j][0].val() < m.scores[i][j][1].val() {
|
||||
return 1
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
// NewMatcher returns a new fuzzy matcher for scoring candidates against the provided pattern.
|
||||
func NewMatcher(pattern string) *Matcher {
|
||||
if len(pattern) > MaxPatternSize {
|
||||
pattern = pattern[:MaxPatternSize]
|
||||
}
|
||||
|
||||
m := &Matcher{
|
||||
pattern: pattern,
|
||||
patternLower: ToLower(pattern, nil),
|
||||
}
|
||||
|
||||
for i, c := range m.patternLower {
|
||||
if pattern[i] != c {
|
||||
m.caseSensitive = true
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
if len(pattern) > 3 {
|
||||
m.patternShort = m.patternLower[:3]
|
||||
} else {
|
||||
m.patternShort = m.patternLower
|
||||
}
|
||||
|
||||
m.patternRoles = RuneRoles(pattern, nil)
|
||||
|
||||
if len(pattern) > 0 {
|
||||
maxCharScore := 4
|
||||
m.scoreScale = 1 / float32(maxCharScore*len(pattern))
|
||||
}
|
||||
|
||||
return m
|
||||
}
|
||||
|
||||
// Score returns the score returned by matching the candidate to the pattern.
|
||||
// This is not designed for parallel use. Multiple candidates must be scored sequentially.
|
||||
// Returns a score between 0 and 1 (0 - no match, 1 - perfect match).
|
||||
func (m *Matcher) Score(candidate string) float32 {
|
||||
if len(candidate) > MaxInputSize {
|
||||
candidate = candidate[:MaxInputSize]
|
||||
}
|
||||
lower := ToLower(candidate, m.lowerBuf[:])
|
||||
m.lastCandidateLen = len(candidate)
|
||||
|
||||
if len(m.pattern) == 0 {
|
||||
// Empty patterns perfectly match candidates.
|
||||
return 1
|
||||
}
|
||||
|
||||
if m.match(candidate, lower) {
|
||||
sc := m.computeScore(candidate, lower)
|
||||
if sc > minScore/2 && !m.poorMatch() {
|
||||
m.lastCandidateMatched = true
|
||||
if len(m.pattern) == len(candidate) {
|
||||
// Perfect match.
|
||||
return 1
|
||||
}
|
||||
|
||||
if sc < 0 {
|
||||
sc = 0
|
||||
}
|
||||
normalizedScore := float32(sc) * m.scoreScale
|
||||
if normalizedScore > 1 {
|
||||
normalizedScore = 1
|
||||
}
|
||||
|
||||
return normalizedScore
|
||||
}
|
||||
}
|
||||
|
||||
m.lastCandidateMatched = false
|
||||
return -1
|
||||
}
|
||||
|
||||
const minScore = -10000
|
||||
|
||||
// MatchedRanges returns matches ranges for the last scored string as a flattened array of
|
||||
// [begin, end) byte offset pairs.
|
||||
func (m *Matcher) MatchedRanges() []int {
|
||||
if len(m.pattern) == 0 || !m.lastCandidateMatched {
|
||||
return nil
|
||||
}
|
||||
i, j := m.lastCandidateLen, len(m.pattern)
|
||||
if m.scores[i][j][0].val() < minScore/2 && m.scores[i][j][1].val() < minScore/2 {
|
||||
return nil
|
||||
}
|
||||
|
||||
var ret []int
|
||||
k := m.bestK(i, j)
|
||||
for i > 0 {
|
||||
take := (k == 1)
|
||||
k = m.scores[i][j][k].prevK()
|
||||
if take {
|
||||
if len(ret) == 0 || ret[len(ret)-1] != i {
|
||||
ret = append(ret, i)
|
||||
ret = append(ret, i-1)
|
||||
} else {
|
||||
ret[len(ret)-1] = i - 1
|
||||
}
|
||||
j--
|
||||
}
|
||||
i--
|
||||
}
|
||||
// Reverse slice.
|
||||
for i := 0; i < len(ret)/2; i++ {
|
||||
ret[i], ret[len(ret)-1-i] = ret[len(ret)-1-i], ret[i]
|
||||
}
|
||||
return ret
|
||||
}
|
||||
|
||||
func (m *Matcher) match(candidate string, candidateLower []byte) bool {
|
||||
i, j := 0, 0
|
||||
for ; i < len(candidateLower) && j < len(m.patternLower); i++ {
|
||||
if candidateLower[i] == m.patternLower[j] {
|
||||
j++
|
||||
}
|
||||
}
|
||||
if j != len(m.patternLower) {
|
||||
return false
|
||||
}
|
||||
|
||||
// The input passes the simple test against pattern, so it is time to classify its characters.
|
||||
// Character roles are used below to find the last segment.
|
||||
m.roles = RuneRoles(candidate, m.rolesBuf[:])
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
func (m *Matcher) computeScore(candidate string, candidateLower []byte) int {
|
||||
pattLen, candLen := len(m.pattern), len(candidate)
|
||||
|
||||
for j := 0; j <= len(m.pattern); j++ {
|
||||
m.scores[0][j][0] = minScore << 1
|
||||
m.scores[0][j][1] = minScore << 1
|
||||
}
|
||||
m.scores[0][0][0] = score(0, 0) // Start with 0.
|
||||
|
||||
segmentsLeft, lastSegStart := 1, 0
|
||||
for i := 0; i < candLen; i++ {
|
||||
if m.roles[i] == RSep {
|
||||
segmentsLeft++
|
||||
lastSegStart = i + 1
|
||||
}
|
||||
}
|
||||
|
||||
// A per-character bonus for a consecutive match.
|
||||
consecutiveBonus := 2
|
||||
wordIdx := 0 // Word count within segment.
|
||||
for i := 1; i <= candLen; i++ {
|
||||
|
||||
role := m.roles[i-1]
|
||||
isHead := role == RHead
|
||||
|
||||
if isHead {
|
||||
wordIdx++
|
||||
} else if role == RSep && segmentsLeft > 1 {
|
||||
wordIdx = 0
|
||||
segmentsLeft--
|
||||
}
|
||||
|
||||
var skipPenalty int
|
||||
if i == 1 || (i-1) == lastSegStart {
|
||||
// Skipping the start of first or last segment.
|
||||
skipPenalty++
|
||||
}
|
||||
|
||||
for j := 0; j <= pattLen; j++ {
|
||||
// By default, we don't have a match. Fill in the skip data.
|
||||
m.scores[i][j][1] = minScore << 1
|
||||
|
||||
// Compute the skip score.
|
||||
k := 0
|
||||
if m.scores[i-1][j][0].val() < m.scores[i-1][j][1].val() {
|
||||
k = 1
|
||||
}
|
||||
|
||||
skipScore := m.scores[i-1][j][k].val()
|
||||
// Do not penalize missing characters after the last matched segment.
|
||||
if j != pattLen {
|
||||
skipScore -= skipPenalty
|
||||
}
|
||||
m.scores[i][j][0] = score(skipScore, k)
|
||||
|
||||
if j == 0 || candidateLower[i-1] != m.patternLower[j-1] {
|
||||
// Not a match.
|
||||
continue
|
||||
}
|
||||
pRole := m.patternRoles[j-1]
|
||||
|
||||
if role == RTail && pRole == RHead {
|
||||
if j > 1 {
|
||||
// Not a match: a head in the pattern matches a tail character in the candidate.
|
||||
continue
|
||||
}
|
||||
// Special treatment for the first character of the pattern. We allow
|
||||
// matches in the middle of a word if they are long enough, at least
|
||||
// min(3, pattern.length) characters.
|
||||
if !bytes.HasPrefix(candidateLower[i-1:], m.patternShort) {
|
||||
continue
|
||||
}
|
||||
}
|
||||
|
||||
// Compute the char score.
|
||||
var charScore int
|
||||
// Bonus 1: the char is in the candidate's last segment.
|
||||
if segmentsLeft <= 1 {
|
||||
charScore++
|
||||
}
|
||||
// Bonus 2: Case match or a Head in the pattern aligns with one in the word.
|
||||
// Single-case patterns lack segmentation signals and we assume any character
|
||||
// can be a head of a segment.
|
||||
if candidate[i-1] == m.pattern[j-1] || role == RHead && (!m.caseSensitive || pRole == RHead) {
|
||||
charScore++
|
||||
}
|
||||
|
||||
// Penalty 1: pattern char is Head, candidate char is Tail.
|
||||
if role == RTail && pRole == RHead {
|
||||
charScore--
|
||||
}
|
||||
// Penalty 2: first pattern character matched in the middle of a word.
|
||||
if j == 1 && role == RTail {
|
||||
charScore -= 4
|
||||
}
|
||||
|
||||
// Third dimension encodes whether there is a gap between the previous match and the current
|
||||
// one.
|
||||
for k := 0; k < 2; k++ {
|
||||
sc := m.scores[i-1][j-1][k].val() + charScore
|
||||
|
||||
isConsecutive := k == 1 || i-1 == 0 || i-1 == lastSegStart
|
||||
if isConsecutive {
|
||||
// Bonus 3: a consecutive match. First character match also gets a bonus to
|
||||
// ensure prefix final match score normalizes to 1.0.
|
||||
// Logically, this is a part of charScore, but we have to compute it here because it
|
||||
// only applies for consecutive matches (k == 1).
|
||||
sc += consecutiveBonus
|
||||
}
|
||||
if k == 0 {
|
||||
// Penalty 3: Matching inside a segment (and previous char wasn't matched). Penalize for the lack
|
||||
// of alignment.
|
||||
if role == RTail || role == RUCTail {
|
||||
sc -= 3
|
||||
}
|
||||
}
|
||||
|
||||
if sc > m.scores[i][j][1].val() {
|
||||
m.scores[i][j][1] = score(sc, k)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
result := m.scores[len(candidate)][len(m.pattern)][m.bestK(len(candidate), len(m.pattern))].val()
|
||||
|
||||
return result
|
||||
}
|
||||
|
||||
// ScoreTable returns the score table computed for the provided candidate. Used only for debugging.
|
||||
func (m *Matcher) ScoreTable(candidate string) string {
|
||||
var buf bytes.Buffer
|
||||
|
||||
var line1, line2, separator bytes.Buffer
|
||||
line1.WriteString("\t")
|
||||
line2.WriteString("\t")
|
||||
for j := 0; j < len(m.pattern); j++ {
|
||||
line1.WriteString(fmt.Sprintf("%c\t\t", m.pattern[j]))
|
||||
separator.WriteString("----------------")
|
||||
}
|
||||
|
||||
buf.WriteString(line1.String())
|
||||
buf.WriteString("\n")
|
||||
buf.WriteString(separator.String())
|
||||
buf.WriteString("\n")
|
||||
|
||||
for i := 1; i <= len(candidate); i++ {
|
||||
line1.Reset()
|
||||
line2.Reset()
|
||||
|
||||
line1.WriteString(fmt.Sprintf("%c\t", candidate[i-1]))
|
||||
line2.WriteString("\t")
|
||||
|
||||
for j := 1; j <= len(m.pattern); j++ {
|
||||
line1.WriteString(fmt.Sprintf("M%6d(%c)\t", m.scores[i][j][0].val(), dir(m.scores[i][j][0].prevK())))
|
||||
line2.WriteString(fmt.Sprintf("H%6d(%c)\t", m.scores[i][j][1].val(), dir(m.scores[i][j][1].prevK())))
|
||||
}
|
||||
buf.WriteString(line1.String())
|
||||
buf.WriteString("\n")
|
||||
buf.WriteString(line2.String())
|
||||
buf.WriteString("\n")
|
||||
buf.WriteString(separator.String())
|
||||
buf.WriteString("\n")
|
||||
}
|
||||
|
||||
return buf.String()
|
||||
}
|
||||
|
||||
func dir(prevK int) rune {
|
||||
if prevK == 0 {
|
||||
return 'M'
|
||||
}
|
||||
return 'H'
|
||||
}
|
||||
|
||||
func (m *Matcher) poorMatch() bool {
|
||||
if len(m.pattern) < 2 {
|
||||
return false
|
||||
}
|
||||
|
||||
i, j := m.lastCandidateLen, len(m.pattern)
|
||||
k := m.bestK(i, j)
|
||||
|
||||
var counter, len int
|
||||
for i > 0 {
|
||||
take := (k == 1)
|
||||
k = m.scores[i][j][k].prevK()
|
||||
if take {
|
||||
len++
|
||||
if k == 0 && len < 3 && m.roles[i-1] == RTail {
|
||||
// Short match in the middle of a word
|
||||
counter++
|
||||
if counter > 1 {
|
||||
return true
|
||||
}
|
||||
}
|
||||
j--
|
||||
} else {
|
||||
len = 0
|
||||
}
|
||||
i--
|
||||
}
|
||||
return false
|
||||
}
|
Reference in New Issue
Block a user