mirror of
				https://github.com/go-gitea/gitea
				synced 2025-11-03 21:08:25 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			266 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			266 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2012 The Go Authors.  All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
// +build ignore
 | 
						|
 | 
						|
// This program generates fixedhuff.go
 | 
						|
// Invoke as
 | 
						|
//
 | 
						|
//	go run gen.go -output fixedhuff.go
 | 
						|
 | 
						|
package main
 | 
						|
 | 
						|
import (
 | 
						|
	"bytes"
 | 
						|
	"flag"
 | 
						|
	"fmt"
 | 
						|
	"go/format"
 | 
						|
	"io/ioutil"
 | 
						|
	"log"
 | 
						|
)
 | 
						|
 | 
						|
var filename = flag.String("output", "fixedhuff.go", "output file name")
 | 
						|
 | 
						|
const maxCodeLen = 16
 | 
						|
 | 
						|
// Note: the definition of the huffmanDecoder struct is copied from
 | 
						|
// inflate.go, as it is private to the implementation.
 | 
						|
 | 
						|
// chunk & 15 is number of bits
 | 
						|
// chunk >> 4 is value, including table link
 | 
						|
 | 
						|
const (
 | 
						|
	huffmanChunkBits  = 9
 | 
						|
	huffmanNumChunks  = 1 << huffmanChunkBits
 | 
						|
	huffmanCountMask  = 15
 | 
						|
	huffmanValueShift = 4
 | 
						|
)
 | 
						|
 | 
						|
type huffmanDecoder struct {
 | 
						|
	min      int                      // the minimum code length
 | 
						|
	chunks   [huffmanNumChunks]uint32 // chunks as described above
 | 
						|
	links    [][]uint32               // overflow links
 | 
						|
	linkMask uint32                   // mask the width of the link table
 | 
						|
}
 | 
						|
 | 
						|
// Initialize Huffman decoding tables from array of code lengths.
 | 
						|
// Following this function, h is guaranteed to be initialized into a complete
 | 
						|
// tree (i.e., neither over-subscribed nor under-subscribed). The exception is a
 | 
						|
// degenerate case where the tree has only a single symbol with length 1. Empty
 | 
						|
// trees are permitted.
 | 
						|
func (h *huffmanDecoder) init(bits []int) bool {
 | 
						|
	// Sanity enables additional runtime tests during Huffman
 | 
						|
	// table construction.  It's intended to be used during
 | 
						|
	// development to supplement the currently ad-hoc unit tests.
 | 
						|
	const sanity = false
 | 
						|
 | 
						|
	if h.min != 0 {
 | 
						|
		*h = huffmanDecoder{}
 | 
						|
	}
 | 
						|
 | 
						|
	// Count number of codes of each length,
 | 
						|
	// compute min and max length.
 | 
						|
	var count [maxCodeLen]int
 | 
						|
	var min, max int
 | 
						|
	for _, n := range bits {
 | 
						|
		if n == 0 {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		if min == 0 || n < min {
 | 
						|
			min = n
 | 
						|
		}
 | 
						|
		if n > max {
 | 
						|
			max = n
 | 
						|
		}
 | 
						|
		count[n]++
 | 
						|
	}
 | 
						|
 | 
						|
	// Empty tree. The decompressor.huffSym function will fail later if the tree
 | 
						|
	// is used. Technically, an empty tree is only valid for the HDIST tree and
 | 
						|
	// not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree
 | 
						|
	// is guaranteed to fail since it will attempt to use the tree to decode the
 | 
						|
	// codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is
 | 
						|
	// guaranteed to fail later since the compressed data section must be
 | 
						|
	// composed of at least one symbol (the end-of-block marker).
 | 
						|
	if max == 0 {
 | 
						|
		return true
 | 
						|
	}
 | 
						|
 | 
						|
	code := 0
 | 
						|
	var nextcode [maxCodeLen]int
 | 
						|
	for i := min; i <= max; i++ {
 | 
						|
		code <<= 1
 | 
						|
		nextcode[i] = code
 | 
						|
		code += count[i]
 | 
						|
	}
 | 
						|
 | 
						|
	// Check that the coding is complete (i.e., that we've
 | 
						|
	// assigned all 2-to-the-max possible bit sequences).
 | 
						|
	// Exception: To be compatible with zlib, we also need to
 | 
						|
	// accept degenerate single-code codings.  See also
 | 
						|
	// TestDegenerateHuffmanCoding.
 | 
						|
	if code != 1<<uint(max) && !(code == 1 && max == 1) {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
 | 
						|
	h.min = min
 | 
						|
	if max > huffmanChunkBits {
 | 
						|
		numLinks := 1 << (uint(max) - huffmanChunkBits)
 | 
						|
		h.linkMask = uint32(numLinks - 1)
 | 
						|
 | 
						|
		// create link tables
 | 
						|
		link := nextcode[huffmanChunkBits+1] >> 1
 | 
						|
		h.links = make([][]uint32, huffmanNumChunks-link)
 | 
						|
		for j := uint(link); j < huffmanNumChunks; j++ {
 | 
						|
			reverse := int(reverseByte[j>>8]) | int(reverseByte[j&0xff])<<8
 | 
						|
			reverse >>= uint(16 - huffmanChunkBits)
 | 
						|
			off := j - uint(link)
 | 
						|
			if sanity && h.chunks[reverse] != 0 {
 | 
						|
				panic("impossible: overwriting existing chunk")
 | 
						|
			}
 | 
						|
			h.chunks[reverse] = uint32(off<<huffmanValueShift | (huffmanChunkBits + 1))
 | 
						|
			h.links[off] = make([]uint32, numLinks)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	for i, n := range bits {
 | 
						|
		if n == 0 {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		code := nextcode[n]
 | 
						|
		nextcode[n]++
 | 
						|
		chunk := uint32(i<<huffmanValueShift | n)
 | 
						|
		reverse := int(reverseByte[code>>8]) | int(reverseByte[code&0xff])<<8
 | 
						|
		reverse >>= uint(16 - n)
 | 
						|
		if n <= huffmanChunkBits {
 | 
						|
			for off := reverse; off < len(h.chunks); off += 1 << uint(n) {
 | 
						|
				// We should never need to overwrite
 | 
						|
				// an existing chunk.  Also, 0 is
 | 
						|
				// never a valid chunk, because the
 | 
						|
				// lower 4 "count" bits should be
 | 
						|
				// between 1 and 15.
 | 
						|
				if sanity && h.chunks[off] != 0 {
 | 
						|
					panic("impossible: overwriting existing chunk")
 | 
						|
				}
 | 
						|
				h.chunks[off] = chunk
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			j := reverse & (huffmanNumChunks - 1)
 | 
						|
			if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 {
 | 
						|
				// Longer codes should have been
 | 
						|
				// associated with a link table above.
 | 
						|
				panic("impossible: not an indirect chunk")
 | 
						|
			}
 | 
						|
			value := h.chunks[j] >> huffmanValueShift
 | 
						|
			linktab := h.links[value]
 | 
						|
			reverse >>= huffmanChunkBits
 | 
						|
			for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) {
 | 
						|
				if sanity && linktab[off] != 0 {
 | 
						|
					panic("impossible: overwriting existing chunk")
 | 
						|
				}
 | 
						|
				linktab[off] = chunk
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if sanity {
 | 
						|
		// Above we've sanity checked that we never overwrote
 | 
						|
		// an existing entry.  Here we additionally check that
 | 
						|
		// we filled the tables completely.
 | 
						|
		for i, chunk := range h.chunks {
 | 
						|
			if chunk == 0 {
 | 
						|
				// As an exception, in the degenerate
 | 
						|
				// single-code case, we allow odd
 | 
						|
				// chunks to be missing.
 | 
						|
				if code == 1 && i%2 == 1 {
 | 
						|
					continue
 | 
						|
				}
 | 
						|
				panic("impossible: missing chunk")
 | 
						|
			}
 | 
						|
		}
 | 
						|
		for _, linktab := range h.links {
 | 
						|
			for _, chunk := range linktab {
 | 
						|
				if chunk == 0 {
 | 
						|
					panic("impossible: missing chunk")
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return true
 | 
						|
}
 | 
						|
 | 
						|
func main() {
 | 
						|
	flag.Parse()
 | 
						|
 | 
						|
	var h huffmanDecoder
 | 
						|
	var bits [288]int
 | 
						|
	initReverseByte()
 | 
						|
	for i := 0; i < 144; i++ {
 | 
						|
		bits[i] = 8
 | 
						|
	}
 | 
						|
	for i := 144; i < 256; i++ {
 | 
						|
		bits[i] = 9
 | 
						|
	}
 | 
						|
	for i := 256; i < 280; i++ {
 | 
						|
		bits[i] = 7
 | 
						|
	}
 | 
						|
	for i := 280; i < 288; i++ {
 | 
						|
		bits[i] = 8
 | 
						|
	}
 | 
						|
	h.init(bits[:])
 | 
						|
	if h.links != nil {
 | 
						|
		log.Fatal("Unexpected links table in fixed Huffman decoder")
 | 
						|
	}
 | 
						|
 | 
						|
	var buf bytes.Buffer
 | 
						|
 | 
						|
	fmt.Fprintf(&buf, `// Copyright 2013 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.`+"\n\n")
 | 
						|
 | 
						|
	fmt.Fprintln(&buf, "package flate")
 | 
						|
	fmt.Fprintln(&buf)
 | 
						|
	fmt.Fprintln(&buf, "// autogenerated by go run gen.go -output fixedhuff.go, DO NOT EDIT")
 | 
						|
	fmt.Fprintln(&buf)
 | 
						|
	fmt.Fprintln(&buf, "var fixedHuffmanDecoder = huffmanDecoder{")
 | 
						|
	fmt.Fprintf(&buf, "\t%d,\n", h.min)
 | 
						|
	fmt.Fprintln(&buf, "\t[huffmanNumChunks]uint32{")
 | 
						|
	for i := 0; i < huffmanNumChunks; i++ {
 | 
						|
		if i&7 == 0 {
 | 
						|
			fmt.Fprintf(&buf, "\t\t")
 | 
						|
		} else {
 | 
						|
			fmt.Fprintf(&buf, " ")
 | 
						|
		}
 | 
						|
		fmt.Fprintf(&buf, "0x%04x,", h.chunks[i])
 | 
						|
		if i&7 == 7 {
 | 
						|
			fmt.Fprintln(&buf)
 | 
						|
		}
 | 
						|
	}
 | 
						|
	fmt.Fprintln(&buf, "\t},")
 | 
						|
	fmt.Fprintln(&buf, "\tnil, 0,")
 | 
						|
	fmt.Fprintln(&buf, "}")
 | 
						|
 | 
						|
	data, err := format.Source(buf.Bytes())
 | 
						|
	if err != nil {
 | 
						|
		log.Fatal(err)
 | 
						|
	}
 | 
						|
	err = ioutil.WriteFile(*filename, data, 0644)
 | 
						|
	if err != nil {
 | 
						|
		log.Fatal(err)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
var reverseByte [256]byte
 | 
						|
 | 
						|
func initReverseByte() {
 | 
						|
	for x := 0; x < 256; x++ {
 | 
						|
		var result byte
 | 
						|
		for i := uint(0); i < 8; i++ {
 | 
						|
			result |= byte(((x >> i) & 1) << (7 - i))
 | 
						|
		}
 | 
						|
		reverseByte[x] = result
 | 
						|
	}
 | 
						|
}
 |