1
1
mirror of https://github.com/go-gitea/gitea synced 2025-01-11 18:24:27 +00:00
2016-11-04 08:43:11 +01:00

857 lines
26 KiB
Go

// Copyright 2011 The Snappy-Go Authors. All rights reserved.
// Modified for deflate by Klaus Post (c) 2015.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
// emitLiteral writes a literal chunk and returns the number of bytes written.
func emitLiteral(dst *tokens, lit []byte) {
ol := int(dst.n)
for i, v := range lit {
dst.tokens[(i+ol)&maxStoreBlockSize] = token(v)
}
dst.n += uint16(len(lit))
}
// emitCopy writes a copy chunk and returns the number of bytes written.
func emitCopy(dst *tokens, offset, length int) {
dst.tokens[dst.n] = matchToken(uint32(length-3), uint32(offset-minOffsetSize))
dst.n++
}
type snappyEnc interface {
Encode(dst *tokens, src []byte)
Reset()
}
func newSnappy(level int) snappyEnc {
switch level {
case 1:
return &snappyL1{}
case 2:
return &snappyL2{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}
case 3:
return &snappyL3{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}
case 4:
return &snappyL4{snappyL3{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}}
default:
panic("invalid level specified")
}
}
const (
tableBits = 14 // Bits used in the table
tableSize = 1 << tableBits // Size of the table
tableMask = tableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks.
tableShift = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32.
baseMatchOffset = 1 // The smallest match offset
baseMatchLength = 3 // The smallest match length per the RFC section 3.2.5
maxMatchOffset = 1 << 15 // The largest match offset
)
func load32(b []byte, i int) uint32 {
b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}
func load64(b []byte, i int) uint64 {
b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
}
func hash(u uint32) uint32 {
return (u * 0x1e35a7bd) >> tableShift
}
// snappyL1 encapsulates level 1 compression
type snappyL1 struct{}
func (e *snappyL1) Reset() {}
func (e *snappyL1) Encode(dst *tokens, src []byte) {
const (
inputMargin = 16 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
)
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len(src) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
dst.n = uint16(len(src))
return
}
// Initialize the hash table.
//
// The table element type is uint16, as s < sLimit and sLimit < len(src)
// and len(src) <= maxStoreBlockSize and maxStoreBlockSize == 65535.
var table [tableSize]uint16
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := len(src) - inputMargin
// nextEmit is where in src the next emitLiteral should start from.
nextEmit := 0
// The encoded form must start with a literal, as there are no previous
// bytes to copy, so we start looking for hash matches at s == 1.
s := 1
nextHash := hash(load32(src, s))
for {
// Copied from the C++ snappy implementation:
//
// Heuristic match skipping: If 32 bytes are scanned with no matches
// found, start looking only at every other byte. If 32 more bytes are
// scanned (or skipped), look at every third byte, etc.. When a match
// is found, immediately go back to looking at every byte. This is a
// small loss (~5% performance, ~0.1% density) for compressible data
// due to more bookkeeping, but for non-compressible data (such as
// JPEG) it's a huge win since the compressor quickly "realizes" the
// data is incompressible and doesn't bother looking for matches
// everywhere.
//
// The "skip" variable keeps track of how many bytes there are since
// the last match; dividing it by 32 (ie. right-shifting by five) gives
// the number of bytes to move ahead for each iteration.
skip := 32
nextS := s
candidate := 0
for {
s = nextS
bytesBetweenHashLookups := skip >> 5
nextS = s + bytesBetweenHashLookups
skip += bytesBetweenHashLookups
if nextS > sLimit {
goto emitRemainder
}
candidate = int(table[nextHash&tableMask])
table[nextHash&tableMask] = uint16(s)
nextHash = hash(load32(src, nextS))
// TODO: < should be <=, and add a test for that.
if s-candidate < maxMatchOffset && load32(src, s) == load32(src, candidate) {
break
}
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
emitLiteral(dst, src[nextEmit:s])
// Call emitCopy, and then see if another emitCopy could be our next
// move. Repeat until we find no match for the input immediately after
// what was consumed by the last emitCopy call.
//
// If we exit this loop normally then we need to call emitLiteral next,
// though we don't yet know how big the literal will be. We handle that
// by proceeding to the next iteration of the main loop. We also can
// exit this loop via goto if we get close to exhausting the input.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
base := s
// Extend the 4-byte match as long as possible.
//
// This is an inlined version of Snappy's:
// s = extendMatch(src, candidate+4, s+4)
s += 4
s1 := base + maxMatchLength
if s1 > len(src) {
s1 = len(src)
}
a := src[s:s1]
b := src[candidate+4:]
b = b[:len(a)]
l := len(a)
for i := range a {
if a[i] != b[i] {
l = i
break
}
}
s += l
// matchToken is flate's equivalent of Snappy's emitCopy.
dst.tokens[dst.n] = matchToken(uint32(s-base-baseMatchLength), uint32(base-candidate-baseMatchOffset))
dst.n++
nextEmit = s
if s >= sLimit {
goto emitRemainder
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-1 and at s. If
// another emitCopy is not our next move, also calculate nextHash
// at s+1. At least on GOARCH=amd64, these three hash calculations
// are faster as one load64 call (with some shifts) instead of
// three load32 calls.
x := load64(src, s-1)
prevHash := hash(uint32(x >> 0))
table[prevHash&tableMask] = uint16(s - 1)
currHash := hash(uint32(x >> 8))
candidate = int(table[currHash&tableMask])
table[currHash&tableMask] = uint16(s)
// TODO: >= should be >, and add a test for that.
if s-candidate >= maxMatchOffset || uint32(x>>8) != load32(src, candidate) {
nextHash = hash(uint32(x >> 16))
s++
break
}
}
}
emitRemainder:
if nextEmit < len(src) {
emitLiteral(dst, src[nextEmit:])
}
}
type tableEntry struct {
val uint32
offset int32
}
func load3232(b []byte, i int32) uint32 {
b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}
func load6432(b []byte, i int32) uint64 {
b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
}
// snappyGen maintains the table for matches,
// and the previous byte block for level 2.
// This is the generic implementation.
type snappyGen struct {
prev []byte
cur int32
}
// snappyGen maintains the table for matches,
// and the previous byte block for level 2.
// This is the generic implementation.
type snappyL2 struct {
snappyGen
table [tableSize]tableEntry
}
// EncodeL2 uses a similar algorithm to level 1, but is capable
// of matching across blocks giving better compression at a small slowdown.
func (e *snappyL2) Encode(dst *tokens, src []byte) {
const (
inputMargin = 16 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
)
// Ensure that e.cur doesn't wrap, mainly an issue on 32 bits.
if e.cur > 1<<30 {
for i := range e.table {
e.table[i] = tableEntry{}
}
e.cur = maxStoreBlockSize
}
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len(src) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
dst.n = uint16(len(src))
e.cur += maxStoreBlockSize
e.prev = e.prev[:0]
return
}
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := int32(len(src) - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
nextEmit := int32(0)
s := int32(0)
cv := load3232(src, s)
nextHash := hash(cv)
for {
// Copied from the C++ snappy implementation:
//
// Heuristic match skipping: If 32 bytes are scanned with no matches
// found, start looking only at every other byte. If 32 more bytes are
// scanned (or skipped), look at every third byte, etc.. When a match
// is found, immediately go back to looking at every byte. This is a
// small loss (~5% performance, ~0.1% density) for compressible data
// due to more bookkeeping, but for non-compressible data (such as
// JPEG) it's a huge win since the compressor quickly "realizes" the
// data is incompressible and doesn't bother looking for matches
// everywhere.
//
// The "skip" variable keeps track of how many bytes there are since
// the last match; dividing it by 32 (ie. right-shifting by five) gives
// the number of bytes to move ahead for each iteration.
skip := int32(32)
nextS := s
var candidate tableEntry
for {
s = nextS
bytesBetweenHashLookups := skip >> 5
nextS = s + bytesBetweenHashLookups
skip += bytesBetweenHashLookups
if nextS > sLimit {
goto emitRemainder
}
candidate = e.table[nextHash&tableMask]
now := load3232(src, nextS)
e.table[nextHash&tableMask] = tableEntry{offset: s + e.cur, val: cv}
nextHash = hash(now)
offset := s - (candidate.offset - e.cur)
if offset >= maxMatchOffset || cv != candidate.val {
// Out of range or not matched.
cv = now
continue
}
break
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
emitLiteral(dst, src[nextEmit:s])
// Call emitCopy, and then see if another emitCopy could be our next
// move. Repeat until we find no match for the input immediately after
// what was consumed by the last emitCopy call.
//
// If we exit this loop normally then we need to call emitLiteral next,
// though we don't yet know how big the literal will be. We handle that
// by proceeding to the next iteration of the main loop. We also can
// exit this loop via goto if we get close to exhausting the input.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
// Extend the 4-byte match as long as possible.
//
s += 4
t := candidate.offset - e.cur + 4
l := e.matchlen(s, t, src)
// matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
dst.n++
s += l
nextEmit = s
if s >= sLimit {
goto emitRemainder
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-1 and at s. If
// another emitCopy is not our next move, also calculate nextHash
// at s+1. At least on GOARCH=amd64, these three hash calculations
// are faster as one load64 call (with some shifts) instead of
// three load32 calls.
x := load6432(src, s-1)
prevHash := hash(uint32(x))
e.table[prevHash&tableMask] = tableEntry{offset: e.cur + s - 1, val: uint32(x)}
x >>= 8
currHash := hash(uint32(x))
candidate = e.table[currHash&tableMask]
e.table[currHash&tableMask] = tableEntry{offset: e.cur + s, val: uint32(x)}
offset := s - (candidate.offset - e.cur)
if offset >= maxMatchOffset || uint32(x) != candidate.val {
cv = uint32(x >> 8)
nextHash = hash(cv)
s++
break
}
}
}
emitRemainder:
if int(nextEmit) < len(src) {
emitLiteral(dst, src[nextEmit:])
}
e.cur += int32(len(src))
e.prev = e.prev[:len(src)]
copy(e.prev, src)
}
type tableEntryPrev struct {
Cur tableEntry
Prev tableEntry
}
// snappyL3
type snappyL3 struct {
snappyGen
table [tableSize]tableEntryPrev
}
// Encode uses a similar algorithm to level 2, will check up to two candidates.
func (e *snappyL3) Encode(dst *tokens, src []byte) {
const (
inputMargin = 16 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
)
// Ensure that e.cur doesn't wrap, mainly an issue on 32 bits.
if e.cur > 1<<30 {
for i := range e.table {
e.table[i] = tableEntryPrev{}
}
e.cur = maxStoreBlockSize
}
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len(src) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
dst.n = uint16(len(src))
e.cur += maxStoreBlockSize
e.prev = e.prev[:0]
return
}
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := int32(len(src) - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
nextEmit := int32(0)
s := int32(0)
cv := load3232(src, s)
nextHash := hash(cv)
for {
// Copied from the C++ snappy implementation:
//
// Heuristic match skipping: If 32 bytes are scanned with no matches
// found, start looking only at every other byte. If 32 more bytes are
// scanned (or skipped), look at every third byte, etc.. When a match
// is found, immediately go back to looking at every byte. This is a
// small loss (~5% performance, ~0.1% density) for compressible data
// due to more bookkeeping, but for non-compressible data (such as
// JPEG) it's a huge win since the compressor quickly "realizes" the
// data is incompressible and doesn't bother looking for matches
// everywhere.
//
// The "skip" variable keeps track of how many bytes there are since
// the last match; dividing it by 32 (ie. right-shifting by five) gives
// the number of bytes to move ahead for each iteration.
skip := int32(32)
nextS := s
var candidate tableEntry
for {
s = nextS
bytesBetweenHashLookups := skip >> 5
nextS = s + bytesBetweenHashLookups
skip += bytesBetweenHashLookups
if nextS > sLimit {
goto emitRemainder
}
candidates := e.table[nextHash&tableMask]
now := load3232(src, nextS)
e.table[nextHash&tableMask] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}}
nextHash = hash(now)
// Check both candidates
candidate = candidates.Cur
if cv == candidate.val {
offset := s - (candidate.offset - e.cur)
if offset < maxMatchOffset {
break
}
} else {
// We only check if value mismatches.
// Offset will always be invalid in other cases.
candidate = candidates.Prev
if cv == candidate.val {
offset := s - (candidate.offset - e.cur)
if offset < maxMatchOffset {
break
}
}
}
cv = now
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
emitLiteral(dst, src[nextEmit:s])
// Call emitCopy, and then see if another emitCopy could be our next
// move. Repeat until we find no match for the input immediately after
// what was consumed by the last emitCopy call.
//
// If we exit this loop normally then we need to call emitLiteral next,
// though we don't yet know how big the literal will be. We handle that
// by proceeding to the next iteration of the main loop. We also can
// exit this loop via goto if we get close to exhausting the input.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
// Extend the 4-byte match as long as possible.
//
s += 4
t := candidate.offset - e.cur + 4
l := e.matchlen(s, t, src)
// matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
dst.n++
s += l
nextEmit = s
if s >= sLimit {
goto emitRemainder
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-2, s-1 and at s. If
// another emitCopy is not our next move, also calculate nextHash
// at s+1. At least on GOARCH=amd64, these three hash calculations
// are faster as one load64 call (with some shifts) instead of
// three load32 calls.
x := load6432(src, s-2)
prevHash := hash(uint32(x))
e.table[prevHash&tableMask] = tableEntryPrev{
Prev: e.table[prevHash&tableMask].Cur,
Cur: tableEntry{offset: e.cur + s - 2, val: uint32(x)},
}
x >>= 8
prevHash = hash(uint32(x))
e.table[prevHash&tableMask] = tableEntryPrev{
Prev: e.table[prevHash&tableMask].Cur,
Cur: tableEntry{offset: e.cur + s - 1, val: uint32(x)},
}
x >>= 8
currHash := hash(uint32(x))
candidates := e.table[currHash&tableMask]
cv = uint32(x)
e.table[currHash&tableMask] = tableEntryPrev{
Prev: candidates.Cur,
Cur: tableEntry{offset: s + e.cur, val: cv},
}
// Check both candidates
candidate = candidates.Cur
if cv == candidate.val {
offset := s - (candidate.offset - e.cur)
if offset < maxMatchOffset {
continue
}
} else {
// We only check if value mismatches.
// Offset will always be invalid in other cases.
candidate = candidates.Prev
if cv == candidate.val {
offset := s - (candidate.offset - e.cur)
if offset < maxMatchOffset {
continue
}
}
}
cv = uint32(x >> 8)
nextHash = hash(cv)
s++
break
}
}
emitRemainder:
if int(nextEmit) < len(src) {
emitLiteral(dst, src[nextEmit:])
}
e.cur += int32(len(src))
e.prev = e.prev[:len(src)]
copy(e.prev, src)
}
// snappyL4
type snappyL4 struct {
snappyL3
}
// Encode uses a similar algorithm to level 3,
// but will check up to two candidates if first isn't long enough.
func (e *snappyL4) Encode(dst *tokens, src []byte) {
const (
inputMargin = 16 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
matchLenGood = 12
)
// Ensure that e.cur doesn't wrap, mainly an issue on 32 bits.
if e.cur > 1<<30 {
for i := range e.table {
e.table[i] = tableEntryPrev{}
}
e.cur = maxStoreBlockSize
}
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len(src) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
dst.n = uint16(len(src))
e.cur += maxStoreBlockSize
e.prev = e.prev[:0]
return
}
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := int32(len(src) - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
nextEmit := int32(0)
s := int32(0)
cv := load3232(src, s)
nextHash := hash(cv)
for {
// Copied from the C++ snappy implementation:
//
// Heuristic match skipping: If 32 bytes are scanned with no matches
// found, start looking only at every other byte. If 32 more bytes are
// scanned (or skipped), look at every third byte, etc.. When a match
// is found, immediately go back to looking at every byte. This is a
// small loss (~5% performance, ~0.1% density) for compressible data
// due to more bookkeeping, but for non-compressible data (such as
// JPEG) it's a huge win since the compressor quickly "realizes" the
// data is incompressible and doesn't bother looking for matches
// everywhere.
//
// The "skip" variable keeps track of how many bytes there are since
// the last match; dividing it by 32 (ie. right-shifting by five) gives
// the number of bytes to move ahead for each iteration.
skip := int32(32)
nextS := s
var candidate tableEntry
var candidateAlt tableEntry
for {
s = nextS
bytesBetweenHashLookups := skip >> 5
nextS = s + bytesBetweenHashLookups
skip += bytesBetweenHashLookups
if nextS > sLimit {
goto emitRemainder
}
candidates := e.table[nextHash&tableMask]
now := load3232(src, nextS)
e.table[nextHash&tableMask] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}}
nextHash = hash(now)
// Check both candidates
candidate = candidates.Cur
if cv == candidate.val {
offset := s - (candidate.offset - e.cur)
if offset < maxMatchOffset {
offset = s - (candidates.Prev.offset - e.cur)
if cv == candidates.Prev.val && offset < maxMatchOffset {
candidateAlt = candidates.Prev
}
break
}
} else {
// We only check if value mismatches.
// Offset will always be invalid in other cases.
candidate = candidates.Prev
if cv == candidate.val {
offset := s - (candidate.offset - e.cur)
if offset < maxMatchOffset {
break
}
}
}
cv = now
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
emitLiteral(dst, src[nextEmit:s])
// Call emitCopy, and then see if another emitCopy could be our next
// move. Repeat until we find no match for the input immediately after
// what was consumed by the last emitCopy call.
//
// If we exit this loop normally then we need to call emitLiteral next,
// though we don't yet know how big the literal will be. We handle that
// by proceeding to the next iteration of the main loop. We also can
// exit this loop via goto if we get close to exhausting the input.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
// Extend the 4-byte match as long as possible.
//
s += 4
t := candidate.offset - e.cur + 4
l := e.matchlen(s, t, src)
// Try alternative candidate if match length < matchLenGood.
if l < matchLenGood-4 && candidateAlt.offset != 0 {
t2 := candidateAlt.offset - e.cur + 4
l2 := e.matchlen(s, t2, src)
if l2 > l {
l = l2
t = t2
}
}
// matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
dst.n++
s += l
nextEmit = s
if s >= sLimit {
goto emitRemainder
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-2, s-1 and at s. If
// another emitCopy is not our next move, also calculate nextHash
// at s+1. At least on GOARCH=amd64, these three hash calculations
// are faster as one load64 call (with some shifts) instead of
// three load32 calls.
x := load6432(src, s-2)
prevHash := hash(uint32(x))
e.table[prevHash&tableMask] = tableEntryPrev{
Prev: e.table[prevHash&tableMask].Cur,
Cur: tableEntry{offset: e.cur + s - 2, val: uint32(x)},
}
x >>= 8
prevHash = hash(uint32(x))
e.table[prevHash&tableMask] = tableEntryPrev{
Prev: e.table[prevHash&tableMask].Cur,
Cur: tableEntry{offset: e.cur + s - 1, val: uint32(x)},
}
x >>= 8
currHash := hash(uint32(x))
candidates := e.table[currHash&tableMask]
cv = uint32(x)
e.table[currHash&tableMask] = tableEntryPrev{
Prev: candidates.Cur,
Cur: tableEntry{offset: s + e.cur, val: cv},
}
// Check both candidates
candidate = candidates.Cur
candidateAlt = tableEntry{}
if cv == candidate.val {
offset := s - (candidate.offset - e.cur)
if offset < maxMatchOffset {
offset = s - (candidates.Prev.offset - e.cur)
if cv == candidates.Prev.val && offset < maxMatchOffset {
candidateAlt = candidates.Prev
}
continue
}
} else {
// We only check if value mismatches.
// Offset will always be invalid in other cases.
candidate = candidates.Prev
if cv == candidate.val {
offset := s - (candidate.offset - e.cur)
if offset < maxMatchOffset {
continue
}
}
}
cv = uint32(x >> 8)
nextHash = hash(cv)
s++
break
}
}
emitRemainder:
if int(nextEmit) < len(src) {
emitLiteral(dst, src[nextEmit:])
}
e.cur += int32(len(src))
e.prev = e.prev[:len(src)]
copy(e.prev, src)
}
func (e *snappyGen) matchlen(s, t int32, src []byte) int32 {
s1 := int(s) + maxMatchLength - 4
if s1 > len(src) {
s1 = len(src)
}
// If we are inside the current block
if t >= 0 {
b := src[t:]
a := src[s:s1]
b = b[:len(a)]
// Extend the match to be as long as possible.
for i := range a {
if a[i] != b[i] {
return int32(i)
}
}
return int32(len(a))
}
// We found a match in the previous block.
tp := int32(len(e.prev)) + t
if tp < 0 {
return 0
}
// Extend the match to be as long as possible.
a := src[s:s1]
b := e.prev[tp:]
if len(b) > len(a) {
b = b[:len(a)]
}
a = a[:len(b)]
for i := range b {
if a[i] != b[i] {
return int32(i)
}
}
n := int32(len(b))
a = src[s+n : s1]
b = src[:len(a)]
for i := range a {
if a[i] != b[i] {
return int32(i) + n
}
}
return int32(len(a)) + n
}
// Reset the encoding table.
func (e *snappyGen) Reset() {
e.prev = e.prev[:0]
e.cur += maxMatchOffset + 1
}