mirror of
				https://github.com/go-gitea/gitea
				synced 2025-11-04 05:18:25 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			912 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			912 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2009 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
package flate
 | 
						|
 | 
						|
import (
 | 
						|
	"io"
 | 
						|
)
 | 
						|
 | 
						|
const (
 | 
						|
	// The largest offset code.
 | 
						|
	offsetCodeCount = 30
 | 
						|
 | 
						|
	// The special code used to mark the end of a block.
 | 
						|
	endBlockMarker = 256
 | 
						|
 | 
						|
	// The first length code.
 | 
						|
	lengthCodesStart = 257
 | 
						|
 | 
						|
	// The number of codegen codes.
 | 
						|
	codegenCodeCount = 19
 | 
						|
	badCode          = 255
 | 
						|
 | 
						|
	// bufferFlushSize indicates the buffer size
 | 
						|
	// after which bytes are flushed to the writer.
 | 
						|
	// Should preferably be a multiple of 6, since
 | 
						|
	// we accumulate 6 bytes between writes to the buffer.
 | 
						|
	bufferFlushSize = 240
 | 
						|
 | 
						|
	// bufferSize is the actual output byte buffer size.
 | 
						|
	// It must have additional headroom for a flush
 | 
						|
	// which can contain up to 8 bytes.
 | 
						|
	bufferSize = bufferFlushSize + 8
 | 
						|
)
 | 
						|
 | 
						|
// The number of extra bits needed by length code X - LENGTH_CODES_START.
 | 
						|
var lengthExtraBits = [32]int8{
 | 
						|
	/* 257 */ 0, 0, 0,
 | 
						|
	/* 260 */ 0, 0, 0, 0, 0, 1, 1, 1, 1, 2,
 | 
						|
	/* 270 */ 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
 | 
						|
	/* 280 */ 4, 5, 5, 5, 5, 0,
 | 
						|
}
 | 
						|
 | 
						|
// The length indicated by length code X - LENGTH_CODES_START.
 | 
						|
var lengthBase = [32]uint8{
 | 
						|
	0, 1, 2, 3, 4, 5, 6, 7, 8, 10,
 | 
						|
	12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
 | 
						|
	64, 80, 96, 112, 128, 160, 192, 224, 255,
 | 
						|
}
 | 
						|
 | 
						|
// offset code word extra bits.
 | 
						|
var offsetExtraBits = [64]int8{
 | 
						|
	0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
 | 
						|
	4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
 | 
						|
	9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
 | 
						|
	/* extended window */
 | 
						|
	14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20,
 | 
						|
}
 | 
						|
 | 
						|
var offsetBase = [64]uint32{
 | 
						|
	/* normal deflate */
 | 
						|
	0x000000, 0x000001, 0x000002, 0x000003, 0x000004,
 | 
						|
	0x000006, 0x000008, 0x00000c, 0x000010, 0x000018,
 | 
						|
	0x000020, 0x000030, 0x000040, 0x000060, 0x000080,
 | 
						|
	0x0000c0, 0x000100, 0x000180, 0x000200, 0x000300,
 | 
						|
	0x000400, 0x000600, 0x000800, 0x000c00, 0x001000,
 | 
						|
	0x001800, 0x002000, 0x003000, 0x004000, 0x006000,
 | 
						|
 | 
						|
	/* extended window */
 | 
						|
	0x008000, 0x00c000, 0x010000, 0x018000, 0x020000,
 | 
						|
	0x030000, 0x040000, 0x060000, 0x080000, 0x0c0000,
 | 
						|
	0x100000, 0x180000, 0x200000, 0x300000,
 | 
						|
}
 | 
						|
 | 
						|
// The odd order in which the codegen code sizes are written.
 | 
						|
var codegenOrder = []uint32{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
 | 
						|
 | 
						|
type huffmanBitWriter struct {
 | 
						|
	// writer is the underlying writer.
 | 
						|
	// Do not use it directly; use the write method, which ensures
 | 
						|
	// that Write errors are sticky.
 | 
						|
	writer io.Writer
 | 
						|
 | 
						|
	// Data waiting to be written is bytes[0:nbytes]
 | 
						|
	// and then the low nbits of bits.
 | 
						|
	bits            uint64
 | 
						|
	nbits           uint16
 | 
						|
	nbytes          uint8
 | 
						|
	literalEncoding *huffmanEncoder
 | 
						|
	offsetEncoding  *huffmanEncoder
 | 
						|
	codegenEncoding *huffmanEncoder
 | 
						|
	err             error
 | 
						|
	lastHeader      int
 | 
						|
	// Set between 0 (reused block can be up to 2x the size)
 | 
						|
	logNewTablePenalty uint
 | 
						|
	lastHuffMan        bool
 | 
						|
	bytes              [256]byte
 | 
						|
	literalFreq        [lengthCodesStart + 32]uint16
 | 
						|
	offsetFreq         [32]uint16
 | 
						|
	codegenFreq        [codegenCodeCount]uint16
 | 
						|
 | 
						|
	// codegen must have an extra space for the final symbol.
 | 
						|
	codegen [literalCount + offsetCodeCount + 1]uint8
 | 
						|
}
 | 
						|
 | 
						|
// Huffman reuse.
 | 
						|
//
 | 
						|
// The huffmanBitWriter supports reusing huffman tables and thereby combining block sections.
 | 
						|
//
 | 
						|
// This is controlled by several variables:
 | 
						|
//
 | 
						|
// If lastHeader is non-zero the Huffman table can be reused.
 | 
						|
// This also indicates that a Huffman table has been generated that can output all
 | 
						|
// possible symbols.
 | 
						|
// It also indicates that an EOB has not yet been emitted, so if a new tabel is generated
 | 
						|
// an EOB with the previous table must be written.
 | 
						|
//
 | 
						|
// If lastHuffMan is set, a table for outputting literals has been generated and offsets are invalid.
 | 
						|
//
 | 
						|
// An incoming block estimates the output size of a new table using a 'fresh' by calculating the
 | 
						|
// optimal size and adding a penalty in 'logNewTablePenalty'.
 | 
						|
// A Huffman table is not optimal, which is why we add a penalty, and generating a new table
 | 
						|
// is slower both for compression and decompression.
 | 
						|
 | 
						|
func newHuffmanBitWriter(w io.Writer) *huffmanBitWriter {
 | 
						|
	return &huffmanBitWriter{
 | 
						|
		writer:          w,
 | 
						|
		literalEncoding: newHuffmanEncoder(literalCount),
 | 
						|
		codegenEncoding: newHuffmanEncoder(codegenCodeCount),
 | 
						|
		offsetEncoding:  newHuffmanEncoder(offsetCodeCount),
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (w *huffmanBitWriter) reset(writer io.Writer) {
 | 
						|
	w.writer = writer
 | 
						|
	w.bits, w.nbits, w.nbytes, w.err = 0, 0, 0, nil
 | 
						|
	w.lastHeader = 0
 | 
						|
	w.lastHuffMan = false
 | 
						|
}
 | 
						|
 | 
						|
func (w *huffmanBitWriter) canReuse(t *tokens) (offsets, lits bool) {
 | 
						|
	offsets, lits = true, true
 | 
						|
	a := t.offHist[:offsetCodeCount]
 | 
						|
	b := w.offsetFreq[:len(a)]
 | 
						|
	for i := range a {
 | 
						|
		if b[i] == 0 && a[i] != 0 {
 | 
						|
			offsets = false
 | 
						|
			break
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	a = t.extraHist[:literalCount-256]
 | 
						|
	b = w.literalFreq[256:literalCount]
 | 
						|
	b = b[:len(a)]
 | 
						|
	for i := range a {
 | 
						|
		if b[i] == 0 && a[i] != 0 {
 | 
						|
			lits = false
 | 
						|
			break
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if lits {
 | 
						|
		a = t.litHist[:]
 | 
						|
		b = w.literalFreq[:len(a)]
 | 
						|
		for i := range a {
 | 
						|
			if b[i] == 0 && a[i] != 0 {
 | 
						|
				lits = false
 | 
						|
				break
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
func (w *huffmanBitWriter) flush() {
 | 
						|
	if w.err != nil {
 | 
						|
		w.nbits = 0
 | 
						|
		return
 | 
						|
	}
 | 
						|
	if w.lastHeader > 0 {
 | 
						|
		// We owe an EOB
 | 
						|
		w.writeCode(w.literalEncoding.codes[endBlockMarker])
 | 
						|
		w.lastHeader = 0
 | 
						|
	}
 | 
						|
	n := w.nbytes
 | 
						|
	for w.nbits != 0 {
 | 
						|
		w.bytes[n] = byte(w.bits)
 | 
						|
		w.bits >>= 8
 | 
						|
		if w.nbits > 8 { // Avoid underflow
 | 
						|
			w.nbits -= 8
 | 
						|
		} else {
 | 
						|
			w.nbits = 0
 | 
						|
		}
 | 
						|
		n++
 | 
						|
	}
 | 
						|
	w.bits = 0
 | 
						|
	w.write(w.bytes[:n])
 | 
						|
	w.nbytes = 0
 | 
						|
}
 | 
						|
 | 
						|
func (w *huffmanBitWriter) write(b []byte) {
 | 
						|
	if w.err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	_, w.err = w.writer.Write(b)
 | 
						|
}
 | 
						|
 | 
						|
func (w *huffmanBitWriter) writeBits(b int32, nb uint16) {
 | 
						|
	w.bits |= uint64(b) << (w.nbits & 63)
 | 
						|
	w.nbits += nb
 | 
						|
	if w.nbits >= 48 {
 | 
						|
		w.writeOutBits()
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (w *huffmanBitWriter) writeBytes(bytes []byte) {
 | 
						|
	if w.err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	n := w.nbytes
 | 
						|
	if w.nbits&7 != 0 {
 | 
						|
		w.err = InternalError("writeBytes with unfinished bits")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	for w.nbits != 0 {
 | 
						|
		w.bytes[n] = byte(w.bits)
 | 
						|
		w.bits >>= 8
 | 
						|
		w.nbits -= 8
 | 
						|
		n++
 | 
						|
	}
 | 
						|
	if n != 0 {
 | 
						|
		w.write(w.bytes[:n])
 | 
						|
	}
 | 
						|
	w.nbytes = 0
 | 
						|
	w.write(bytes)
 | 
						|
}
 | 
						|
 | 
						|
// RFC 1951 3.2.7 specifies a special run-length encoding for specifying
 | 
						|
// the literal and offset lengths arrays (which are concatenated into a single
 | 
						|
// array).  This method generates that run-length encoding.
 | 
						|
//
 | 
						|
// The result is written into the codegen array, and the frequencies
 | 
						|
// of each code is written into the codegenFreq array.
 | 
						|
// Codes 0-15 are single byte codes. Codes 16-18 are followed by additional
 | 
						|
// information. Code badCode is an end marker
 | 
						|
//
 | 
						|
//  numLiterals      The number of literals in literalEncoding
 | 
						|
//  numOffsets       The number of offsets in offsetEncoding
 | 
						|
//  litenc, offenc   The literal and offset encoder to use
 | 
						|
func (w *huffmanBitWriter) generateCodegen(numLiterals int, numOffsets int, litEnc, offEnc *huffmanEncoder) {
 | 
						|
	for i := range w.codegenFreq {
 | 
						|
		w.codegenFreq[i] = 0
 | 
						|
	}
 | 
						|
	// Note that we are using codegen both as a temporary variable for holding
 | 
						|
	// a copy of the frequencies, and as the place where we put the result.
 | 
						|
	// This is fine because the output is always shorter than the input used
 | 
						|
	// so far.
 | 
						|
	codegen := w.codegen[:] // cache
 | 
						|
	// Copy the concatenated code sizes to codegen. Put a marker at the end.
 | 
						|
	cgnl := codegen[:numLiterals]
 | 
						|
	for i := range cgnl {
 | 
						|
		cgnl[i] = uint8(litEnc.codes[i].len)
 | 
						|
	}
 | 
						|
 | 
						|
	cgnl = codegen[numLiterals : numLiterals+numOffsets]
 | 
						|
	for i := range cgnl {
 | 
						|
		cgnl[i] = uint8(offEnc.codes[i].len)
 | 
						|
	}
 | 
						|
	codegen[numLiterals+numOffsets] = badCode
 | 
						|
 | 
						|
	size := codegen[0]
 | 
						|
	count := 1
 | 
						|
	outIndex := 0
 | 
						|
	for inIndex := 1; size != badCode; inIndex++ {
 | 
						|
		// INVARIANT: We have seen "count" copies of size that have not yet
 | 
						|
		// had output generated for them.
 | 
						|
		nextSize := codegen[inIndex]
 | 
						|
		if nextSize == size {
 | 
						|
			count++
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		// We need to generate codegen indicating "count" of size.
 | 
						|
		if size != 0 {
 | 
						|
			codegen[outIndex] = size
 | 
						|
			outIndex++
 | 
						|
			w.codegenFreq[size]++
 | 
						|
			count--
 | 
						|
			for count >= 3 {
 | 
						|
				n := 6
 | 
						|
				if n > count {
 | 
						|
					n = count
 | 
						|
				}
 | 
						|
				codegen[outIndex] = 16
 | 
						|
				outIndex++
 | 
						|
				codegen[outIndex] = uint8(n - 3)
 | 
						|
				outIndex++
 | 
						|
				w.codegenFreq[16]++
 | 
						|
				count -= n
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			for count >= 11 {
 | 
						|
				n := 138
 | 
						|
				if n > count {
 | 
						|
					n = count
 | 
						|
				}
 | 
						|
				codegen[outIndex] = 18
 | 
						|
				outIndex++
 | 
						|
				codegen[outIndex] = uint8(n - 11)
 | 
						|
				outIndex++
 | 
						|
				w.codegenFreq[18]++
 | 
						|
				count -= n
 | 
						|
			}
 | 
						|
			if count >= 3 {
 | 
						|
				// count >= 3 && count <= 10
 | 
						|
				codegen[outIndex] = 17
 | 
						|
				outIndex++
 | 
						|
				codegen[outIndex] = uint8(count - 3)
 | 
						|
				outIndex++
 | 
						|
				w.codegenFreq[17]++
 | 
						|
				count = 0
 | 
						|
			}
 | 
						|
		}
 | 
						|
		count--
 | 
						|
		for ; count >= 0; count-- {
 | 
						|
			codegen[outIndex] = size
 | 
						|
			outIndex++
 | 
						|
			w.codegenFreq[size]++
 | 
						|
		}
 | 
						|
		// Set up invariant for next time through the loop.
 | 
						|
		size = nextSize
 | 
						|
		count = 1
 | 
						|
	}
 | 
						|
	// Marker indicating the end of the codegen.
 | 
						|
	codegen[outIndex] = badCode
 | 
						|
}
 | 
						|
 | 
						|
func (w *huffmanBitWriter) codegens() int {
 | 
						|
	numCodegens := len(w.codegenFreq)
 | 
						|
	for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 {
 | 
						|
		numCodegens--
 | 
						|
	}
 | 
						|
	return numCodegens
 | 
						|
}
 | 
						|
 | 
						|
func (w *huffmanBitWriter) headerSize() (size, numCodegens int) {
 | 
						|
	numCodegens = len(w.codegenFreq)
 | 
						|
	for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 {
 | 
						|
		numCodegens--
 | 
						|
	}
 | 
						|
	return 3 + 5 + 5 + 4 + (3 * numCodegens) +
 | 
						|
		w.codegenEncoding.bitLength(w.codegenFreq[:]) +
 | 
						|
		int(w.codegenFreq[16])*2 +
 | 
						|
		int(w.codegenFreq[17])*3 +
 | 
						|
		int(w.codegenFreq[18])*7, numCodegens
 | 
						|
}
 | 
						|
 | 
						|
// dynamicSize returns the size of dynamically encoded data in bits.
 | 
						|
func (w *huffmanBitWriter) dynamicReuseSize(litEnc, offEnc *huffmanEncoder) (size int) {
 | 
						|
	size = litEnc.bitLength(w.literalFreq[:]) +
 | 
						|
		offEnc.bitLength(w.offsetFreq[:])
 | 
						|
	return size
 | 
						|
}
 | 
						|
 | 
						|
// dynamicSize returns the size of dynamically encoded data in bits.
 | 
						|
func (w *huffmanBitWriter) dynamicSize(litEnc, offEnc *huffmanEncoder, extraBits int) (size, numCodegens int) {
 | 
						|
	header, numCodegens := w.headerSize()
 | 
						|
	size = header +
 | 
						|
		litEnc.bitLength(w.literalFreq[:]) +
 | 
						|
		offEnc.bitLength(w.offsetFreq[:]) +
 | 
						|
		extraBits
 | 
						|
	return size, numCodegens
 | 
						|
}
 | 
						|
 | 
						|
// extraBitSize will return the number of bits that will be written
 | 
						|
// as "extra" bits on matches.
 | 
						|
func (w *huffmanBitWriter) extraBitSize() int {
 | 
						|
	total := 0
 | 
						|
	for i, n := range w.literalFreq[257:literalCount] {
 | 
						|
		total += int(n) * int(lengthExtraBits[i&31])
 | 
						|
	}
 | 
						|
	for i, n := range w.offsetFreq[:offsetCodeCount] {
 | 
						|
		total += int(n) * int(offsetExtraBits[i&31])
 | 
						|
	}
 | 
						|
	return total
 | 
						|
}
 | 
						|
 | 
						|
// fixedSize returns the size of dynamically encoded data in bits.
 | 
						|
func (w *huffmanBitWriter) fixedSize(extraBits int) int {
 | 
						|
	return 3 +
 | 
						|
		fixedLiteralEncoding.bitLength(w.literalFreq[:]) +
 | 
						|
		fixedOffsetEncoding.bitLength(w.offsetFreq[:]) +
 | 
						|
		extraBits
 | 
						|
}
 | 
						|
 | 
						|
// storedSize calculates the stored size, including header.
 | 
						|
// The function returns the size in bits and whether the block
 | 
						|
// fits inside a single block.
 | 
						|
func (w *huffmanBitWriter) storedSize(in []byte) (int, bool) {
 | 
						|
	if in == nil {
 | 
						|
		return 0, false
 | 
						|
	}
 | 
						|
	if len(in) <= maxStoreBlockSize {
 | 
						|
		return (len(in) + 5) * 8, true
 | 
						|
	}
 | 
						|
	return 0, false
 | 
						|
}
 | 
						|
 | 
						|
func (w *huffmanBitWriter) writeCode(c hcode) {
 | 
						|
	// The function does not get inlined if we "& 63" the shift.
 | 
						|
	w.bits |= uint64(c.code) << w.nbits
 | 
						|
	w.nbits += c.len
 | 
						|
	if w.nbits >= 48 {
 | 
						|
		w.writeOutBits()
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// writeOutBits will write bits to the buffer.
 | 
						|
func (w *huffmanBitWriter) writeOutBits() {
 | 
						|
	bits := w.bits
 | 
						|
	w.bits >>= 48
 | 
						|
	w.nbits -= 48
 | 
						|
	n := w.nbytes
 | 
						|
	w.bytes[n] = byte(bits)
 | 
						|
	w.bytes[n+1] = byte(bits >> 8)
 | 
						|
	w.bytes[n+2] = byte(bits >> 16)
 | 
						|
	w.bytes[n+3] = byte(bits >> 24)
 | 
						|
	w.bytes[n+4] = byte(bits >> 32)
 | 
						|
	w.bytes[n+5] = byte(bits >> 40)
 | 
						|
	n += 6
 | 
						|
	if n >= bufferFlushSize {
 | 
						|
		if w.err != nil {
 | 
						|
			n = 0
 | 
						|
			return
 | 
						|
		}
 | 
						|
		w.write(w.bytes[:n])
 | 
						|
		n = 0
 | 
						|
	}
 | 
						|
	w.nbytes = n
 | 
						|
}
 | 
						|
 | 
						|
// Write the header of a dynamic Huffman block to the output stream.
 | 
						|
//
 | 
						|
//  numLiterals  The number of literals specified in codegen
 | 
						|
//  numOffsets   The number of offsets specified in codegen
 | 
						|
//  numCodegens  The number of codegens used in codegen
 | 
						|
func (w *huffmanBitWriter) writeDynamicHeader(numLiterals int, numOffsets int, numCodegens int, isEof bool) {
 | 
						|
	if w.err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	var firstBits int32 = 4
 | 
						|
	if isEof {
 | 
						|
		firstBits = 5
 | 
						|
	}
 | 
						|
	w.writeBits(firstBits, 3)
 | 
						|
	w.writeBits(int32(numLiterals-257), 5)
 | 
						|
	w.writeBits(int32(numOffsets-1), 5)
 | 
						|
	w.writeBits(int32(numCodegens-4), 4)
 | 
						|
 | 
						|
	for i := 0; i < numCodegens; i++ {
 | 
						|
		value := uint(w.codegenEncoding.codes[codegenOrder[i]].len)
 | 
						|
		w.writeBits(int32(value), 3)
 | 
						|
	}
 | 
						|
 | 
						|
	i := 0
 | 
						|
	for {
 | 
						|
		var codeWord = uint32(w.codegen[i])
 | 
						|
		i++
 | 
						|
		if codeWord == badCode {
 | 
						|
			break
 | 
						|
		}
 | 
						|
		w.writeCode(w.codegenEncoding.codes[codeWord])
 | 
						|
 | 
						|
		switch codeWord {
 | 
						|
		case 16:
 | 
						|
			w.writeBits(int32(w.codegen[i]), 2)
 | 
						|
			i++
 | 
						|
		case 17:
 | 
						|
			w.writeBits(int32(w.codegen[i]), 3)
 | 
						|
			i++
 | 
						|
		case 18:
 | 
						|
			w.writeBits(int32(w.codegen[i]), 7)
 | 
						|
			i++
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// writeStoredHeader will write a stored header.
 | 
						|
// If the stored block is only used for EOF,
 | 
						|
// it is replaced with a fixed huffman block.
 | 
						|
func (w *huffmanBitWriter) writeStoredHeader(length int, isEof bool) {
 | 
						|
	if w.err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	if w.lastHeader > 0 {
 | 
						|
		// We owe an EOB
 | 
						|
		w.writeCode(w.literalEncoding.codes[endBlockMarker])
 | 
						|
		w.lastHeader = 0
 | 
						|
	}
 | 
						|
 | 
						|
	// To write EOF, use a fixed encoding block. 10 bits instead of 5 bytes.
 | 
						|
	if length == 0 && isEof {
 | 
						|
		w.writeFixedHeader(isEof)
 | 
						|
		// EOB: 7 bits, value: 0
 | 
						|
		w.writeBits(0, 7)
 | 
						|
		w.flush()
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	var flag int32
 | 
						|
	if isEof {
 | 
						|
		flag = 1
 | 
						|
	}
 | 
						|
	w.writeBits(flag, 3)
 | 
						|
	w.flush()
 | 
						|
	w.writeBits(int32(length), 16)
 | 
						|
	w.writeBits(int32(^uint16(length)), 16)
 | 
						|
}
 | 
						|
 | 
						|
func (w *huffmanBitWriter) writeFixedHeader(isEof bool) {
 | 
						|
	if w.err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	if w.lastHeader > 0 {
 | 
						|
		// We owe an EOB
 | 
						|
		w.writeCode(w.literalEncoding.codes[endBlockMarker])
 | 
						|
		w.lastHeader = 0
 | 
						|
	}
 | 
						|
 | 
						|
	// Indicate that we are a fixed Huffman block
 | 
						|
	var value int32 = 2
 | 
						|
	if isEof {
 | 
						|
		value = 3
 | 
						|
	}
 | 
						|
	w.writeBits(value, 3)
 | 
						|
}
 | 
						|
 | 
						|
// writeBlock will write a block of tokens with the smallest encoding.
 | 
						|
// The original input can be supplied, and if the huffman encoded data
 | 
						|
// is larger than the original bytes, the data will be written as a
 | 
						|
// stored block.
 | 
						|
// If the input is nil, the tokens will always be Huffman encoded.
 | 
						|
func (w *huffmanBitWriter) writeBlock(tokens *tokens, eof bool, input []byte) {
 | 
						|
	if w.err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	tokens.AddEOB()
 | 
						|
	if w.lastHeader > 0 {
 | 
						|
		// We owe an EOB
 | 
						|
		w.writeCode(w.literalEncoding.codes[endBlockMarker])
 | 
						|
		w.lastHeader = 0
 | 
						|
	}
 | 
						|
	numLiterals, numOffsets := w.indexTokens(tokens, false)
 | 
						|
	w.generate(tokens)
 | 
						|
	var extraBits int
 | 
						|
	storedSize, storable := w.storedSize(input)
 | 
						|
	if storable {
 | 
						|
		extraBits = w.extraBitSize()
 | 
						|
	}
 | 
						|
 | 
						|
	// Figure out smallest code.
 | 
						|
	// Fixed Huffman baseline.
 | 
						|
	var literalEncoding = fixedLiteralEncoding
 | 
						|
	var offsetEncoding = fixedOffsetEncoding
 | 
						|
	var size = w.fixedSize(extraBits)
 | 
						|
 | 
						|
	// Dynamic Huffman?
 | 
						|
	var numCodegens int
 | 
						|
 | 
						|
	// Generate codegen and codegenFrequencies, which indicates how to encode
 | 
						|
	// the literalEncoding and the offsetEncoding.
 | 
						|
	w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
 | 
						|
	w.codegenEncoding.generate(w.codegenFreq[:], 7)
 | 
						|
	dynamicSize, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, extraBits)
 | 
						|
 | 
						|
	if dynamicSize < size {
 | 
						|
		size = dynamicSize
 | 
						|
		literalEncoding = w.literalEncoding
 | 
						|
		offsetEncoding = w.offsetEncoding
 | 
						|
	}
 | 
						|
 | 
						|
	// Stored bytes?
 | 
						|
	if storable && storedSize < size {
 | 
						|
		w.writeStoredHeader(len(input), eof)
 | 
						|
		w.writeBytes(input)
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	// Huffman.
 | 
						|
	if literalEncoding == fixedLiteralEncoding {
 | 
						|
		w.writeFixedHeader(eof)
 | 
						|
	} else {
 | 
						|
		w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
 | 
						|
	}
 | 
						|
 | 
						|
	// Write the tokens.
 | 
						|
	w.writeTokens(tokens.Slice(), literalEncoding.codes, offsetEncoding.codes)
 | 
						|
}
 | 
						|
 | 
						|
// writeBlockDynamic encodes a block using a dynamic Huffman table.
 | 
						|
// This should be used if the symbols used have a disproportionate
 | 
						|
// histogram distribution.
 | 
						|
// If input is supplied and the compression savings are below 1/16th of the
 | 
						|
// input size the block is stored.
 | 
						|
func (w *huffmanBitWriter) writeBlockDynamic(tokens *tokens, eof bool, input []byte, sync bool) {
 | 
						|
	if w.err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	sync = sync || eof
 | 
						|
	if sync {
 | 
						|
		tokens.AddEOB()
 | 
						|
	}
 | 
						|
 | 
						|
	// We cannot reuse pure huffman table, and must mark as EOF.
 | 
						|
	if (w.lastHuffMan || eof) && w.lastHeader > 0 {
 | 
						|
		// We will not try to reuse.
 | 
						|
		w.writeCode(w.literalEncoding.codes[endBlockMarker])
 | 
						|
		w.lastHeader = 0
 | 
						|
		w.lastHuffMan = false
 | 
						|
	}
 | 
						|
	if !sync {
 | 
						|
		tokens.Fill()
 | 
						|
	}
 | 
						|
	numLiterals, numOffsets := w.indexTokens(tokens, !sync)
 | 
						|
 | 
						|
	var size int
 | 
						|
	// Check if we should reuse.
 | 
						|
	if w.lastHeader > 0 {
 | 
						|
		// Estimate size for using a new table.
 | 
						|
		// Use the previous header size as the best estimate.
 | 
						|
		newSize := w.lastHeader + tokens.EstimatedBits()
 | 
						|
		newSize += newSize >> w.logNewTablePenalty
 | 
						|
 | 
						|
		// The estimated size is calculated as an optimal table.
 | 
						|
		// We add a penalty to make it more realistic and re-use a bit more.
 | 
						|
		reuseSize := w.dynamicReuseSize(w.literalEncoding, w.offsetEncoding) + w.extraBitSize()
 | 
						|
 | 
						|
		// Check if a new table is better.
 | 
						|
		if newSize < reuseSize {
 | 
						|
			// Write the EOB we owe.
 | 
						|
			w.writeCode(w.literalEncoding.codes[endBlockMarker])
 | 
						|
			size = newSize
 | 
						|
			w.lastHeader = 0
 | 
						|
		} else {
 | 
						|
			size = reuseSize
 | 
						|
		}
 | 
						|
		// Check if we get a reasonable size decrease.
 | 
						|
		if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
 | 
						|
			w.writeStoredHeader(len(input), eof)
 | 
						|
			w.writeBytes(input)
 | 
						|
			w.lastHeader = 0
 | 
						|
			return
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// We want a new block/table
 | 
						|
	if w.lastHeader == 0 {
 | 
						|
		w.generate(tokens)
 | 
						|
		// Generate codegen and codegenFrequencies, which indicates how to encode
 | 
						|
		// the literalEncoding and the offsetEncoding.
 | 
						|
		w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
 | 
						|
		w.codegenEncoding.generate(w.codegenFreq[:], 7)
 | 
						|
		var numCodegens int
 | 
						|
		size, numCodegens = w.dynamicSize(w.literalEncoding, w.offsetEncoding, w.extraBitSize())
 | 
						|
		// Store bytes, if we don't get a reasonable improvement.
 | 
						|
		if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
 | 
						|
			w.writeStoredHeader(len(input), eof)
 | 
						|
			w.writeBytes(input)
 | 
						|
			w.lastHeader = 0
 | 
						|
			return
 | 
						|
		}
 | 
						|
 | 
						|
		// Write Huffman table.
 | 
						|
		w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
 | 
						|
		w.lastHeader, _ = w.headerSize()
 | 
						|
		w.lastHuffMan = false
 | 
						|
	}
 | 
						|
 | 
						|
	if sync {
 | 
						|
		w.lastHeader = 0
 | 
						|
	}
 | 
						|
	// Write the tokens.
 | 
						|
	w.writeTokens(tokens.Slice(), w.literalEncoding.codes, w.offsetEncoding.codes)
 | 
						|
}
 | 
						|
 | 
						|
// indexTokens indexes a slice of tokens, and updates
 | 
						|
// literalFreq and offsetFreq, and generates literalEncoding
 | 
						|
// and offsetEncoding.
 | 
						|
// The number of literal and offset tokens is returned.
 | 
						|
func (w *huffmanBitWriter) indexTokens(t *tokens, filled bool) (numLiterals, numOffsets int) {
 | 
						|
	copy(w.literalFreq[:], t.litHist[:])
 | 
						|
	copy(w.literalFreq[256:], t.extraHist[:])
 | 
						|
	copy(w.offsetFreq[:], t.offHist[:offsetCodeCount])
 | 
						|
 | 
						|
	if t.n == 0 {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	if filled {
 | 
						|
		return maxNumLit, maxNumDist
 | 
						|
	}
 | 
						|
	// get the number of literals
 | 
						|
	numLiterals = len(w.literalFreq)
 | 
						|
	for w.literalFreq[numLiterals-1] == 0 {
 | 
						|
		numLiterals--
 | 
						|
	}
 | 
						|
	// get the number of offsets
 | 
						|
	numOffsets = len(w.offsetFreq)
 | 
						|
	for numOffsets > 0 && w.offsetFreq[numOffsets-1] == 0 {
 | 
						|
		numOffsets--
 | 
						|
	}
 | 
						|
	if numOffsets == 0 {
 | 
						|
		// We haven't found a single match. If we want to go with the dynamic encoding,
 | 
						|
		// we should count at least one offset to be sure that the offset huffman tree could be encoded.
 | 
						|
		w.offsetFreq[0] = 1
 | 
						|
		numOffsets = 1
 | 
						|
	}
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
func (w *huffmanBitWriter) generate(t *tokens) {
 | 
						|
	w.literalEncoding.generate(w.literalFreq[:literalCount], 15)
 | 
						|
	w.offsetEncoding.generate(w.offsetFreq[:offsetCodeCount], 15)
 | 
						|
}
 | 
						|
 | 
						|
// writeTokens writes a slice of tokens to the output.
 | 
						|
// codes for literal and offset encoding must be supplied.
 | 
						|
func (w *huffmanBitWriter) writeTokens(tokens []token, leCodes, oeCodes []hcode) {
 | 
						|
	if w.err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	if len(tokens) == 0 {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	// Only last token should be endBlockMarker.
 | 
						|
	var deferEOB bool
 | 
						|
	if tokens[len(tokens)-1] == endBlockMarker {
 | 
						|
		tokens = tokens[:len(tokens)-1]
 | 
						|
		deferEOB = true
 | 
						|
	}
 | 
						|
 | 
						|
	// Create slices up to the next power of two to avoid bounds checks.
 | 
						|
	lits := leCodes[:256]
 | 
						|
	offs := oeCodes[:32]
 | 
						|
	lengths := leCodes[lengthCodesStart:]
 | 
						|
	lengths = lengths[:32]
 | 
						|
	for _, t := range tokens {
 | 
						|
		if t < matchType {
 | 
						|
			w.writeCode(lits[t.literal()])
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		// Write the length
 | 
						|
		length := t.length()
 | 
						|
		lengthCode := lengthCode(length)
 | 
						|
		if false {
 | 
						|
			w.writeCode(lengths[lengthCode&31])
 | 
						|
		} else {
 | 
						|
			// inlined
 | 
						|
			c := lengths[lengthCode&31]
 | 
						|
			w.bits |= uint64(c.code) << (w.nbits & 63)
 | 
						|
			w.nbits += c.len
 | 
						|
			if w.nbits >= 48 {
 | 
						|
				w.writeOutBits()
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		extraLengthBits := uint16(lengthExtraBits[lengthCode&31])
 | 
						|
		if extraLengthBits > 0 {
 | 
						|
			extraLength := int32(length - lengthBase[lengthCode&31])
 | 
						|
			w.writeBits(extraLength, extraLengthBits)
 | 
						|
		}
 | 
						|
		// Write the offset
 | 
						|
		offset := t.offset()
 | 
						|
		offsetCode := offsetCode(offset)
 | 
						|
		if false {
 | 
						|
			w.writeCode(offs[offsetCode&31])
 | 
						|
		} else {
 | 
						|
			// inlined
 | 
						|
			c := offs[offsetCode&31]
 | 
						|
			w.bits |= uint64(c.code) << (w.nbits & 63)
 | 
						|
			w.nbits += c.len
 | 
						|
			if w.nbits >= 48 {
 | 
						|
				w.writeOutBits()
 | 
						|
			}
 | 
						|
		}
 | 
						|
		extraOffsetBits := uint16(offsetExtraBits[offsetCode&63])
 | 
						|
		if extraOffsetBits > 0 {
 | 
						|
			extraOffset := int32(offset - offsetBase[offsetCode&63])
 | 
						|
			w.writeBits(extraOffset, extraOffsetBits)
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if deferEOB {
 | 
						|
		w.writeCode(leCodes[endBlockMarker])
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// huffOffset is a static offset encoder used for huffman only encoding.
 | 
						|
// It can be reused since we will not be encoding offset values.
 | 
						|
var huffOffset *huffmanEncoder
 | 
						|
 | 
						|
func init() {
 | 
						|
	w := newHuffmanBitWriter(nil)
 | 
						|
	w.offsetFreq[0] = 1
 | 
						|
	huffOffset = newHuffmanEncoder(offsetCodeCount)
 | 
						|
	huffOffset.generate(w.offsetFreq[:offsetCodeCount], 15)
 | 
						|
}
 | 
						|
 | 
						|
// writeBlockHuff encodes a block of bytes as either
 | 
						|
// Huffman encoded literals or uncompressed bytes if the
 | 
						|
// results only gains very little from compression.
 | 
						|
func (w *huffmanBitWriter) writeBlockHuff(eof bool, input []byte, sync bool) {
 | 
						|
	if w.err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	// Clear histogram
 | 
						|
	for i := range w.literalFreq[:] {
 | 
						|
		w.literalFreq[i] = 0
 | 
						|
	}
 | 
						|
	if !w.lastHuffMan {
 | 
						|
		for i := range w.offsetFreq[:] {
 | 
						|
			w.offsetFreq[i] = 0
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Add everything as literals
 | 
						|
	// We have to estimate the header size.
 | 
						|
	// Assume header is around 70 bytes:
 | 
						|
	// https://stackoverflow.com/a/25454430
 | 
						|
	const guessHeaderSizeBits = 70 * 8
 | 
						|
	estBits, estExtra := histogramSize(input, w.literalFreq[:], !eof && !sync)
 | 
						|
	estBits += w.lastHeader + 15
 | 
						|
	if w.lastHeader == 0 {
 | 
						|
		estBits += guessHeaderSizeBits
 | 
						|
	}
 | 
						|
	estBits += estBits >> w.logNewTablePenalty
 | 
						|
 | 
						|
	// Store bytes, if we don't get a reasonable improvement.
 | 
						|
	ssize, storable := w.storedSize(input)
 | 
						|
	if storable && ssize < estBits {
 | 
						|
		w.writeStoredHeader(len(input), eof)
 | 
						|
		w.writeBytes(input)
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	if w.lastHeader > 0 {
 | 
						|
		reuseSize := w.literalEncoding.bitLength(w.literalFreq[:256])
 | 
						|
		estBits += estExtra
 | 
						|
 | 
						|
		if estBits < reuseSize {
 | 
						|
			// We owe an EOB
 | 
						|
			w.writeCode(w.literalEncoding.codes[endBlockMarker])
 | 
						|
			w.lastHeader = 0
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	const numLiterals = endBlockMarker + 1
 | 
						|
	const numOffsets = 1
 | 
						|
	if w.lastHeader == 0 {
 | 
						|
		w.literalFreq[endBlockMarker] = 1
 | 
						|
		w.literalEncoding.generate(w.literalFreq[:numLiterals], 15)
 | 
						|
 | 
						|
		// Generate codegen and codegenFrequencies, which indicates how to encode
 | 
						|
		// the literalEncoding and the offsetEncoding.
 | 
						|
		w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, huffOffset)
 | 
						|
		w.codegenEncoding.generate(w.codegenFreq[:], 7)
 | 
						|
		numCodegens := w.codegens()
 | 
						|
 | 
						|
		// Huffman.
 | 
						|
		w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
 | 
						|
		w.lastHuffMan = true
 | 
						|
		w.lastHeader, _ = w.headerSize()
 | 
						|
	}
 | 
						|
 | 
						|
	encoding := w.literalEncoding.codes[:257]
 | 
						|
	for _, t := range input {
 | 
						|
		// Bitwriting inlined, ~30% speedup
 | 
						|
		c := encoding[t]
 | 
						|
		w.bits |= uint64(c.code) << ((w.nbits) & 63)
 | 
						|
		w.nbits += c.len
 | 
						|
		if w.nbits >= 48 {
 | 
						|
			bits := w.bits
 | 
						|
			w.bits >>= 48
 | 
						|
			w.nbits -= 48
 | 
						|
			n := w.nbytes
 | 
						|
			w.bytes[n] = byte(bits)
 | 
						|
			w.bytes[n+1] = byte(bits >> 8)
 | 
						|
			w.bytes[n+2] = byte(bits >> 16)
 | 
						|
			w.bytes[n+3] = byte(bits >> 24)
 | 
						|
			w.bytes[n+4] = byte(bits >> 32)
 | 
						|
			w.bytes[n+5] = byte(bits >> 40)
 | 
						|
			n += 6
 | 
						|
			if n >= bufferFlushSize {
 | 
						|
				if w.err != nil {
 | 
						|
					n = 0
 | 
						|
					return
 | 
						|
				}
 | 
						|
				w.write(w.bytes[:n])
 | 
						|
				n = 0
 | 
						|
			}
 | 
						|
			w.nbytes = n
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if eof || sync {
 | 
						|
		w.writeCode(encoding[endBlockMarker])
 | 
						|
		w.lastHeader = 0
 | 
						|
		w.lastHuffMan = false
 | 
						|
	}
 | 
						|
}
 |