1
1
mirror of https://github.com/go-gitea/gitea synced 2024-12-28 19:44:27 +00:00
gitea/vendor/go.uber.org/zap/field.go
6543 86e2789960
Vendor Update (#16121)
* update github.com/PuerkitoBio/goquery

* update github.com/alecthomas/chroma

* update github.com/blevesearch/bleve/v2

* update github.com/caddyserver/certmagic

* update github.com/go-enry/go-enry/v2

* update github.com/go-git/go-billy/v5

* update github.com/go-git/go-git/v5

* update github.com/go-redis/redis/v8

* update github.com/go-testfixtures/testfixtures/v3

* update github.com/jaytaylor/html2text

* update github.com/json-iterator/go

* update github.com/klauspost/compress

* update github.com/markbates/goth

* update github.com/mattn/go-isatty

* update github.com/mholt/archiver/v3

* update github.com/microcosm-cc/bluemonday

* update github.com/minio/minio-go/v7

* update github.com/prometheus/client_golang

* update github.com/unrolled/render

* update github.com/xanzy/go-gitlab

* update github.com/yuin/goldmark

* update github.com/yuin/goldmark-highlighting

Co-authored-by: techknowlogick <techknowlogick@gitea.io>
2021-06-10 16:44:25 +02:00

550 lines
17 KiB
Go
Vendored

// Copyright (c) 2016 Uber Technologies, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package zap
import (
"fmt"
"math"
"time"
"go.uber.org/zap/zapcore"
)
// Field is an alias for Field. Aliasing this type dramatically
// improves the navigability of this package's API documentation.
type Field = zapcore.Field
var (
_minTimeInt64 = time.Unix(0, math.MinInt64)
_maxTimeInt64 = time.Unix(0, math.MaxInt64)
)
// Skip constructs a no-op field, which is often useful when handling invalid
// inputs in other Field constructors.
func Skip() Field {
return Field{Type: zapcore.SkipType}
}
// nilField returns a field which will marshal explicitly as nil. See motivation
// in https://github.com/uber-go/zap/issues/753 . If we ever make breaking
// changes and add zapcore.NilType and zapcore.ObjectEncoder.AddNil, the
// implementation here should be changed to reflect that.
func nilField(key string) Field { return Reflect(key, nil) }
// Binary constructs a field that carries an opaque binary blob.
//
// Binary data is serialized in an encoding-appropriate format. For example,
// zap's JSON encoder base64-encodes binary blobs. To log UTF-8 encoded text,
// use ByteString.
func Binary(key string, val []byte) Field {
return Field{Key: key, Type: zapcore.BinaryType, Interface: val}
}
// Bool constructs a field that carries a bool.
func Bool(key string, val bool) Field {
var ival int64
if val {
ival = 1
}
return Field{Key: key, Type: zapcore.BoolType, Integer: ival}
}
// Boolp constructs a field that carries a *bool. The returned Field will safely
// and explicitly represent `nil` when appropriate.
func Boolp(key string, val *bool) Field {
if val == nil {
return nilField(key)
}
return Bool(key, *val)
}
// ByteString constructs a field that carries UTF-8 encoded text as a []byte.
// To log opaque binary blobs (which aren't necessarily valid UTF-8), use
// Binary.
func ByteString(key string, val []byte) Field {
return Field{Key: key, Type: zapcore.ByteStringType, Interface: val}
}
// Complex128 constructs a field that carries a complex number. Unlike most
// numeric fields, this costs an allocation (to convert the complex128 to
// interface{}).
func Complex128(key string, val complex128) Field {
return Field{Key: key, Type: zapcore.Complex128Type, Interface: val}
}
// Complex128p constructs a field that carries a *complex128. The returned Field will safely
// and explicitly represent `nil` when appropriate.
func Complex128p(key string, val *complex128) Field {
if val == nil {
return nilField(key)
}
return Complex128(key, *val)
}
// Complex64 constructs a field that carries a complex number. Unlike most
// numeric fields, this costs an allocation (to convert the complex64 to
// interface{}).
func Complex64(key string, val complex64) Field {
return Field{Key: key, Type: zapcore.Complex64Type, Interface: val}
}
// Complex64p constructs a field that carries a *complex64. The returned Field will safely
// and explicitly represent `nil` when appropriate.
func Complex64p(key string, val *complex64) Field {
if val == nil {
return nilField(key)
}
return Complex64(key, *val)
}
// Float64 constructs a field that carries a float64. The way the
// floating-point value is represented is encoder-dependent, so marshaling is
// necessarily lazy.
func Float64(key string, val float64) Field {
return Field{Key: key, Type: zapcore.Float64Type, Integer: int64(math.Float64bits(val))}
}
// Float64p constructs a field that carries a *float64. The returned Field will safely
// and explicitly represent `nil` when appropriate.
func Float64p(key string, val *float64) Field {
if val == nil {
return nilField(key)
}
return Float64(key, *val)
}
// Float32 constructs a field that carries a float32. The way the
// floating-point value is represented is encoder-dependent, so marshaling is
// necessarily lazy.
func Float32(key string, val float32) Field {
return Field{Key: key, Type: zapcore.Float32Type, Integer: int64(math.Float32bits(val))}
}
// Float32p constructs a field that carries a *float32. The returned Field will safely
// and explicitly represent `nil` when appropriate.
func Float32p(key string, val *float32) Field {
if val == nil {
return nilField(key)
}
return Float32(key, *val)
}
// Int constructs a field with the given key and value.
func Int(key string, val int) Field {
return Int64(key, int64(val))
}
// Intp constructs a field that carries a *int. The returned Field will safely
// and explicitly represent `nil` when appropriate.
func Intp(key string, val *int) Field {
if val == nil {
return nilField(key)
}
return Int(key, *val)
}
// Int64 constructs a field with the given key and value.
func Int64(key string, val int64) Field {
return Field{Key: key, Type: zapcore.Int64Type, Integer: val}
}
// Int64p constructs a field that carries a *int64. The returned Field will safely
// and explicitly represent `nil` when appropriate.
func Int64p(key string, val *int64) Field {
if val == nil {
return nilField(key)
}
return Int64(key, *val)
}
// Int32 constructs a field with the given key and value.
func Int32(key string, val int32) Field {
return Field{Key: key, Type: zapcore.Int32Type, Integer: int64(val)}
}
// Int32p constructs a field that carries a *int32. The returned Field will safely
// and explicitly represent `nil` when appropriate.
func Int32p(key string, val *int32) Field {
if val == nil {
return nilField(key)
}
return Int32(key, *val)
}
// Int16 constructs a field with the given key and value.
func Int16(key string, val int16) Field {
return Field{Key: key, Type: zapcore.Int16Type, Integer: int64(val)}
}
// Int16p constructs a field that carries a *int16. The returned Field will safely
// and explicitly represent `nil` when appropriate.
func Int16p(key string, val *int16) Field {
if val == nil {
return nilField(key)
}
return Int16(key, *val)
}
// Int8 constructs a field with the given key and value.
func Int8(key string, val int8) Field {
return Field{Key: key, Type: zapcore.Int8Type, Integer: int64(val)}
}
// Int8p constructs a field that carries a *int8. The returned Field will safely
// and explicitly represent `nil` when appropriate.
func Int8p(key string, val *int8) Field {
if val == nil {
return nilField(key)
}
return Int8(key, *val)
}
// String constructs a field with the given key and value.
func String(key string, val string) Field {
return Field{Key: key, Type: zapcore.StringType, String: val}
}
// Stringp constructs a field that carries a *string. The returned Field will safely
// and explicitly represent `nil` when appropriate.
func Stringp(key string, val *string) Field {
if val == nil {
return nilField(key)
}
return String(key, *val)
}
// Uint constructs a field with the given key and value.
func Uint(key string, val uint) Field {
return Uint64(key, uint64(val))
}
// Uintp constructs a field that carries a *uint. The returned Field will safely
// and explicitly represent `nil` when appropriate.
func Uintp(key string, val *uint) Field {
if val == nil {
return nilField(key)
}
return Uint(key, *val)
}
// Uint64 constructs a field with the given key and value.
func Uint64(key string, val uint64) Field {
return Field{Key: key, Type: zapcore.Uint64Type, Integer: int64(val)}
}
// Uint64p constructs a field that carries a *uint64. The returned Field will safely
// and explicitly represent `nil` when appropriate.
func Uint64p(key string, val *uint64) Field {
if val == nil {
return nilField(key)
}
return Uint64(key, *val)
}
// Uint32 constructs a field with the given key and value.
func Uint32(key string, val uint32) Field {
return Field{Key: key, Type: zapcore.Uint32Type, Integer: int64(val)}
}
// Uint32p constructs a field that carries a *uint32. The returned Field will safely
// and explicitly represent `nil` when appropriate.
func Uint32p(key string, val *uint32) Field {
if val == nil {
return nilField(key)
}
return Uint32(key, *val)
}
// Uint16 constructs a field with the given key and value.
func Uint16(key string, val uint16) Field {
return Field{Key: key, Type: zapcore.Uint16Type, Integer: int64(val)}
}
// Uint16p constructs a field that carries a *uint16. The returned Field will safely
// and explicitly represent `nil` when appropriate.
func Uint16p(key string, val *uint16) Field {
if val == nil {
return nilField(key)
}
return Uint16(key, *val)
}
// Uint8 constructs a field with the given key and value.
func Uint8(key string, val uint8) Field {
return Field{Key: key, Type: zapcore.Uint8Type, Integer: int64(val)}
}
// Uint8p constructs a field that carries a *uint8. The returned Field will safely
// and explicitly represent `nil` when appropriate.
func Uint8p(key string, val *uint8) Field {
if val == nil {
return nilField(key)
}
return Uint8(key, *val)
}
// Uintptr constructs a field with the given key and value.
func Uintptr(key string, val uintptr) Field {
return Field{Key: key, Type: zapcore.UintptrType, Integer: int64(val)}
}
// Uintptrp constructs a field that carries a *uintptr. The returned Field will safely
// and explicitly represent `nil` when appropriate.
func Uintptrp(key string, val *uintptr) Field {
if val == nil {
return nilField(key)
}
return Uintptr(key, *val)
}
// Reflect constructs a field with the given key and an arbitrary object. It uses
// an encoding-appropriate, reflection-based function to lazily serialize nearly
// any object into the logging context, but it's relatively slow and
// allocation-heavy. Outside tests, Any is always a better choice.
//
// If encoding fails (e.g., trying to serialize a map[int]string to JSON), Reflect
// includes the error message in the final log output.
func Reflect(key string, val interface{}) Field {
return Field{Key: key, Type: zapcore.ReflectType, Interface: val}
}
// Namespace creates a named, isolated scope within the logger's context. All
// subsequent fields will be added to the new namespace.
//
// This helps prevent key collisions when injecting loggers into sub-components
// or third-party libraries.
func Namespace(key string) Field {
return Field{Key: key, Type: zapcore.NamespaceType}
}
// Stringer constructs a field with the given key and the output of the value's
// String method. The Stringer's String method is called lazily.
func Stringer(key string, val fmt.Stringer) Field {
return Field{Key: key, Type: zapcore.StringerType, Interface: val}
}
// Time constructs a Field with the given key and value. The encoder
// controls how the time is serialized.
func Time(key string, val time.Time) Field {
if val.Before(_minTimeInt64) || val.After(_maxTimeInt64) {
return Field{Key: key, Type: zapcore.TimeFullType, Interface: val}
}
return Field{Key: key, Type: zapcore.TimeType, Integer: val.UnixNano(), Interface: val.Location()}
}
// Timep constructs a field that carries a *time.Time. The returned Field will safely
// and explicitly represent `nil` when appropriate.
func Timep(key string, val *time.Time) Field {
if val == nil {
return nilField(key)
}
return Time(key, *val)
}
// Stack constructs a field that stores a stacktrace of the current goroutine
// under provided key. Keep in mind that taking a stacktrace is eager and
// expensive (relatively speaking); this function both makes an allocation and
// takes about two microseconds.
func Stack(key string) Field {
return StackSkip(key, 1) // skip Stack
}
// StackSkip constructs a field similarly to Stack, but also skips the given
// number of frames from the top of the stacktrace.
func StackSkip(key string, skip int) Field {
// Returning the stacktrace as a string costs an allocation, but saves us
// from expanding the zapcore.Field union struct to include a byte slice. Since
// taking a stacktrace is already so expensive (~10us), the extra allocation
// is okay.
return String(key, takeStacktrace(skip+1)) // skip StackSkip
}
// Duration constructs a field with the given key and value. The encoder
// controls how the duration is serialized.
func Duration(key string, val time.Duration) Field {
return Field{Key: key, Type: zapcore.DurationType, Integer: int64(val)}
}
// Durationp constructs a field that carries a *time.Duration. The returned Field will safely
// and explicitly represent `nil` when appropriate.
func Durationp(key string, val *time.Duration) Field {
if val == nil {
return nilField(key)
}
return Duration(key, *val)
}
// Object constructs a field with the given key and ObjectMarshaler. It
// provides a flexible, but still type-safe and efficient, way to add map- or
// struct-like user-defined types to the logging context. The struct's
// MarshalLogObject method is called lazily.
func Object(key string, val zapcore.ObjectMarshaler) Field {
return Field{Key: key, Type: zapcore.ObjectMarshalerType, Interface: val}
}
// Inline constructs a Field that is similar to Object, but it
// will add the elements of the provided ObjectMarshaler to the
// current namespace.
func Inline(val zapcore.ObjectMarshaler) Field {
return zapcore.Field{
Type: zapcore.InlineMarshalerType,
Interface: val,
}
}
// Any takes a key and an arbitrary value and chooses the best way to represent
// them as a field, falling back to a reflection-based approach only if
// necessary.
//
// Since byte/uint8 and rune/int32 are aliases, Any can't differentiate between
// them. To minimize surprises, []byte values are treated as binary blobs, byte
// values are treated as uint8, and runes are always treated as integers.
func Any(key string, value interface{}) Field {
switch val := value.(type) {
case zapcore.ObjectMarshaler:
return Object(key, val)
case zapcore.ArrayMarshaler:
return Array(key, val)
case bool:
return Bool(key, val)
case *bool:
return Boolp(key, val)
case []bool:
return Bools(key, val)
case complex128:
return Complex128(key, val)
case *complex128:
return Complex128p(key, val)
case []complex128:
return Complex128s(key, val)
case complex64:
return Complex64(key, val)
case *complex64:
return Complex64p(key, val)
case []complex64:
return Complex64s(key, val)
case float64:
return Float64(key, val)
case *float64:
return Float64p(key, val)
case []float64:
return Float64s(key, val)
case float32:
return Float32(key, val)
case *float32:
return Float32p(key, val)
case []float32:
return Float32s(key, val)
case int:
return Int(key, val)
case *int:
return Intp(key, val)
case []int:
return Ints(key, val)
case int64:
return Int64(key, val)
case *int64:
return Int64p(key, val)
case []int64:
return Int64s(key, val)
case int32:
return Int32(key, val)
case *int32:
return Int32p(key, val)
case []int32:
return Int32s(key, val)
case int16:
return Int16(key, val)
case *int16:
return Int16p(key, val)
case []int16:
return Int16s(key, val)
case int8:
return Int8(key, val)
case *int8:
return Int8p(key, val)
case []int8:
return Int8s(key, val)
case string:
return String(key, val)
case *string:
return Stringp(key, val)
case []string:
return Strings(key, val)
case uint:
return Uint(key, val)
case *uint:
return Uintp(key, val)
case []uint:
return Uints(key, val)
case uint64:
return Uint64(key, val)
case *uint64:
return Uint64p(key, val)
case []uint64:
return Uint64s(key, val)
case uint32:
return Uint32(key, val)
case *uint32:
return Uint32p(key, val)
case []uint32:
return Uint32s(key, val)
case uint16:
return Uint16(key, val)
case *uint16:
return Uint16p(key, val)
case []uint16:
return Uint16s(key, val)
case uint8:
return Uint8(key, val)
case *uint8:
return Uint8p(key, val)
case []byte:
return Binary(key, val)
case uintptr:
return Uintptr(key, val)
case *uintptr:
return Uintptrp(key, val)
case []uintptr:
return Uintptrs(key, val)
case time.Time:
return Time(key, val)
case *time.Time:
return Timep(key, val)
case []time.Time:
return Times(key, val)
case time.Duration:
return Duration(key, val)
case *time.Duration:
return Durationp(key, val)
case []time.Duration:
return Durations(key, val)
case error:
return NamedError(key, val)
case []error:
return Errors(key, val)
case fmt.Stringer:
return Stringer(key, val)
default:
return Reflect(key, val)
}
}