1
1
mirror of https://github.com/go-gitea/gitea synced 2025-01-12 18:54:28 +00:00
gitea/vendor/github.com/klauspost/compress/flate/huffman_bit_writer.go
2016-11-04 08:43:11 +01:00

702 lines
18 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
import (
"io"
)
const (
// The largest offset code.
offsetCodeCount = 30
// The special code used to mark the end of a block.
endBlockMarker = 256
// The first length code.
lengthCodesStart = 257
// The number of codegen codes.
codegenCodeCount = 19
badCode = 255
// bufferFlushSize indicates the buffer size
// after which bytes are flushed to the writer.
// Should preferably be a multiple of 6, since
// we accumulate 6 bytes between writes to the buffer.
bufferFlushSize = 240
// bufferSize is the actual output byte buffer size.
// It must have additional headroom for a flush
// which can contain up to 8 bytes.
bufferSize = bufferFlushSize + 8
)
// The number of extra bits needed by length code X - LENGTH_CODES_START.
var lengthExtraBits = []int8{
/* 257 */ 0, 0, 0,
/* 260 */ 0, 0, 0, 0, 0, 1, 1, 1, 1, 2,
/* 270 */ 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
/* 280 */ 4, 5, 5, 5, 5, 0,
}
// The length indicated by length code X - LENGTH_CODES_START.
var lengthBase = []uint32{
0, 1, 2, 3, 4, 5, 6, 7, 8, 10,
12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
64, 80, 96, 112, 128, 160, 192, 224, 255,
}
// offset code word extra bits.
var offsetExtraBits = []int8{
0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
/* extended window */
14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20,
}
var offsetBase = []uint32{
/* normal deflate */
0x000000, 0x000001, 0x000002, 0x000003, 0x000004,
0x000006, 0x000008, 0x00000c, 0x000010, 0x000018,
0x000020, 0x000030, 0x000040, 0x000060, 0x000080,
0x0000c0, 0x000100, 0x000180, 0x000200, 0x000300,
0x000400, 0x000600, 0x000800, 0x000c00, 0x001000,
0x001800, 0x002000, 0x003000, 0x004000, 0x006000,
/* extended window */
0x008000, 0x00c000, 0x010000, 0x018000, 0x020000,
0x030000, 0x040000, 0x060000, 0x080000, 0x0c0000,
0x100000, 0x180000, 0x200000, 0x300000,
}
// The odd order in which the codegen code sizes are written.
var codegenOrder = []uint32{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
type huffmanBitWriter struct {
// writer is the underlying writer.
// Do not use it directly; use the write method, which ensures
// that Write errors are sticky.
writer io.Writer
// Data waiting to be written is bytes[0:nbytes]
// and then the low nbits of bits.
bits uint64
nbits uint
bytes [bufferSize]byte
codegenFreq [codegenCodeCount]int32
nbytes int
literalFreq []int32
offsetFreq []int32
codegen []uint8
literalEncoding *huffmanEncoder
offsetEncoding *huffmanEncoder
codegenEncoding *huffmanEncoder
err error
}
func newHuffmanBitWriter(w io.Writer) *huffmanBitWriter {
return &huffmanBitWriter{
writer: w,
literalFreq: make([]int32, maxNumLit),
offsetFreq: make([]int32, offsetCodeCount),
codegen: make([]uint8, maxNumLit+offsetCodeCount+1),
literalEncoding: newHuffmanEncoder(maxNumLit),
codegenEncoding: newHuffmanEncoder(codegenCodeCount),
offsetEncoding: newHuffmanEncoder(offsetCodeCount),
}
}
func (w *huffmanBitWriter) reset(writer io.Writer) {
w.writer = writer
w.bits, w.nbits, w.nbytes, w.err = 0, 0, 0, nil
w.bytes = [bufferSize]byte{}
}
func (w *huffmanBitWriter) flush() {
if w.err != nil {
w.nbits = 0
return
}
n := w.nbytes
for w.nbits != 0 {
w.bytes[n] = byte(w.bits)
w.bits >>= 8
if w.nbits > 8 { // Avoid underflow
w.nbits -= 8
} else {
w.nbits = 0
}
n++
}
w.bits = 0
w.write(w.bytes[:n])
w.nbytes = 0
}
func (w *huffmanBitWriter) write(b []byte) {
if w.err != nil {
return
}
_, w.err = w.writer.Write(b)
}
func (w *huffmanBitWriter) writeBits(b int32, nb uint) {
if w.err != nil {
return
}
w.bits |= uint64(b) << w.nbits
w.nbits += nb
if w.nbits >= 48 {
bits := w.bits
w.bits >>= 48
w.nbits -= 48
n := w.nbytes
bytes := w.bytes[n : n+6]
bytes[0] = byte(bits)
bytes[1] = byte(bits >> 8)
bytes[2] = byte(bits >> 16)
bytes[3] = byte(bits >> 24)
bytes[4] = byte(bits >> 32)
bytes[5] = byte(bits >> 40)
n += 6
if n >= bufferFlushSize {
w.write(w.bytes[:n])
n = 0
}
w.nbytes = n
}
}
func (w *huffmanBitWriter) writeBytes(bytes []byte) {
if w.err != nil {
return
}
n := w.nbytes
if w.nbits&7 != 0 {
w.err = InternalError("writeBytes with unfinished bits")
return
}
for w.nbits != 0 {
w.bytes[n] = byte(w.bits)
w.bits >>= 8
w.nbits -= 8
n++
}
if n != 0 {
w.write(w.bytes[:n])
}
w.nbytes = 0
w.write(bytes)
}
// RFC 1951 3.2.7 specifies a special run-length encoding for specifying
// the literal and offset lengths arrays (which are concatenated into a single
// array). This method generates that run-length encoding.
//
// The result is written into the codegen array, and the frequencies
// of each code is written into the codegenFreq array.
// Codes 0-15 are single byte codes. Codes 16-18 are followed by additional
// information. Code badCode is an end marker
//
// numLiterals The number of literals in literalEncoding
// numOffsets The number of offsets in offsetEncoding
// litenc, offenc The literal and offset encoder to use
func (w *huffmanBitWriter) generateCodegen(numLiterals int, numOffsets int, litEnc, offEnc *huffmanEncoder) {
for i := range w.codegenFreq {
w.codegenFreq[i] = 0
}
// Note that we are using codegen both as a temporary variable for holding
// a copy of the frequencies, and as the place where we put the result.
// This is fine because the output is always shorter than the input used
// so far.
codegen := w.codegen // cache
// Copy the concatenated code sizes to codegen. Put a marker at the end.
cgnl := codegen[:numLiterals]
for i := range cgnl {
cgnl[i] = uint8(litEnc.codes[i].len)
}
cgnl = codegen[numLiterals : numLiterals+numOffsets]
for i := range cgnl {
cgnl[i] = uint8(offEnc.codes[i].len)
}
codegen[numLiterals+numOffsets] = badCode
size := codegen[0]
count := 1
outIndex := 0
for inIndex := 1; size != badCode; inIndex++ {
// INVARIANT: We have seen "count" copies of size that have not yet
// had output generated for them.
nextSize := codegen[inIndex]
if nextSize == size {
count++
continue
}
// We need to generate codegen indicating "count" of size.
if size != 0 {
codegen[outIndex] = size
outIndex++
w.codegenFreq[size]++
count--
for count >= 3 {
n := 6
if n > count {
n = count
}
codegen[outIndex] = 16
outIndex++
codegen[outIndex] = uint8(n - 3)
outIndex++
w.codegenFreq[16]++
count -= n
}
} else {
for count >= 11 {
n := 138
if n > count {
n = count
}
codegen[outIndex] = 18
outIndex++
codegen[outIndex] = uint8(n - 11)
outIndex++
w.codegenFreq[18]++
count -= n
}
if count >= 3 {
// count >= 3 && count <= 10
codegen[outIndex] = 17
outIndex++
codegen[outIndex] = uint8(count - 3)
outIndex++
w.codegenFreq[17]++
count = 0
}
}
count--
for ; count >= 0; count-- {
codegen[outIndex] = size
outIndex++
w.codegenFreq[size]++
}
// Set up invariant for next time through the loop.
size = nextSize
count = 1
}
// Marker indicating the end of the codegen.
codegen[outIndex] = badCode
}
// dynamicSize returns the size of dynamically encoded data in bits.
func (w *huffmanBitWriter) dynamicSize(litEnc, offEnc *huffmanEncoder, extraBits int) (size, numCodegens int) {
numCodegens = len(w.codegenFreq)
for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 {
numCodegens--
}
header := 3 + 5 + 5 + 4 + (3 * numCodegens) +
w.codegenEncoding.bitLength(w.codegenFreq[:]) +
int(w.codegenFreq[16])*2 +
int(w.codegenFreq[17])*3 +
int(w.codegenFreq[18])*7
size = header +
litEnc.bitLength(w.literalFreq) +
offEnc.bitLength(w.offsetFreq) +
extraBits
return size, numCodegens
}
// fixedSize returns the size of dynamically encoded data in bits.
func (w *huffmanBitWriter) fixedSize(extraBits int) int {
return 3 +
fixedLiteralEncoding.bitLength(w.literalFreq) +
fixedOffsetEncoding.bitLength(w.offsetFreq) +
extraBits
}
// storedSize calculates the stored size, including header.
// The function returns the size in bits and whether the block
// fits inside a single block.
func (w *huffmanBitWriter) storedSize(in []byte) (int, bool) {
if in == nil {
return 0, false
}
if len(in) <= maxStoreBlockSize {
return (len(in) + 5) * 8, true
}
return 0, false
}
func (w *huffmanBitWriter) writeCode(c hcode) {
if w.err != nil {
return
}
w.bits |= uint64(c.code) << w.nbits
w.nbits += uint(c.len)
if w.nbits >= 48 {
bits := w.bits
w.bits >>= 48
w.nbits -= 48
n := w.nbytes
bytes := w.bytes[n : n+6]
bytes[0] = byte(bits)
bytes[1] = byte(bits >> 8)
bytes[2] = byte(bits >> 16)
bytes[3] = byte(bits >> 24)
bytes[4] = byte(bits >> 32)
bytes[5] = byte(bits >> 40)
n += 6
if n >= bufferFlushSize {
w.write(w.bytes[:n])
n = 0
}
w.nbytes = n
}
}
// Write the header of a dynamic Huffman block to the output stream.
//
// numLiterals The number of literals specified in codegen
// numOffsets The number of offsets specified in codegen
// numCodegens The number of codegens used in codegen
func (w *huffmanBitWriter) writeDynamicHeader(numLiterals int, numOffsets int, numCodegens int, isEof bool) {
if w.err != nil {
return
}
var firstBits int32 = 4
if isEof {
firstBits = 5
}
w.writeBits(firstBits, 3)
w.writeBits(int32(numLiterals-257), 5)
w.writeBits(int32(numOffsets-1), 5)
w.writeBits(int32(numCodegens-4), 4)
for i := 0; i < numCodegens; i++ {
value := uint(w.codegenEncoding.codes[codegenOrder[i]].len)
w.writeBits(int32(value), 3)
}
i := 0
for {
var codeWord int = int(w.codegen[i])
i++
if codeWord == badCode {
break
}
w.writeCode(w.codegenEncoding.codes[uint32(codeWord)])
switch codeWord {
case 16:
w.writeBits(int32(w.codegen[i]), 2)
i++
break
case 17:
w.writeBits(int32(w.codegen[i]), 3)
i++
break
case 18:
w.writeBits(int32(w.codegen[i]), 7)
i++
break
}
}
}
func (w *huffmanBitWriter) writeStoredHeader(length int, isEof bool) {
if w.err != nil {
return
}
var flag int32
if isEof {
flag = 1
}
w.writeBits(flag, 3)
w.flush()
w.writeBits(int32(length), 16)
w.writeBits(int32(^uint16(length)), 16)
}
func (w *huffmanBitWriter) writeFixedHeader(isEof bool) {
if w.err != nil {
return
}
// Indicate that we are a fixed Huffman block
var value int32 = 2
if isEof {
value = 3
}
w.writeBits(value, 3)
}
// writeBlock will write a block of tokens with the smallest encoding.
// The original input can be supplied, and if the huffman encoded data
// is larger than the original bytes, the data will be written as a
// stored block.
// If the input is nil, the tokens will always be Huffman encoded.
func (w *huffmanBitWriter) writeBlock(tokens []token, eof bool, input []byte) {
if w.err != nil {
return
}
tokens = append(tokens, endBlockMarker)
numLiterals, numOffsets := w.indexTokens(tokens)
var extraBits int
storedSize, storable := w.storedSize(input)
if storable {
// We only bother calculating the costs of the extra bits required by
// the length of offset fields (which will be the same for both fixed
// and dynamic encoding), if we need to compare those two encodings
// against stored encoding.
for lengthCode := lengthCodesStart + 8; lengthCode < numLiterals; lengthCode++ {
// First eight length codes have extra size = 0.
extraBits += int(w.literalFreq[lengthCode]) * int(lengthExtraBits[lengthCode-lengthCodesStart])
}
for offsetCode := 4; offsetCode < numOffsets; offsetCode++ {
// First four offset codes have extra size = 0.
extraBits += int(w.offsetFreq[offsetCode]) * int(offsetExtraBits[offsetCode])
}
}
// Figure out smallest code.
// Fixed Huffman baseline.
var literalEncoding = fixedLiteralEncoding
var offsetEncoding = fixedOffsetEncoding
var size = w.fixedSize(extraBits)
// Dynamic Huffman?
var numCodegens int
// Generate codegen and codegenFrequencies, which indicates how to encode
// the literalEncoding and the offsetEncoding.
w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
w.codegenEncoding.generate(w.codegenFreq[:], 7)
dynamicSize, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, extraBits)
if dynamicSize < size {
size = dynamicSize
literalEncoding = w.literalEncoding
offsetEncoding = w.offsetEncoding
}
// Stored bytes?
if storable && storedSize < size {
w.writeStoredHeader(len(input), eof)
w.writeBytes(input)
return
}
// Huffman.
if literalEncoding == fixedLiteralEncoding {
w.writeFixedHeader(eof)
} else {
w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
}
// Write the tokens.
w.writeTokens(tokens, literalEncoding.codes, offsetEncoding.codes)
}
// writeBlockDynamic encodes a block using a dynamic Huffman table.
// This should be used if the symbols used have a disproportionate
// histogram distribution.
// If input is supplied and the compression savings are below 1/16th of the
// input size the block is stored.
func (w *huffmanBitWriter) writeBlockDynamic(tokens []token, eof bool, input []byte) {
if w.err != nil {
return
}
tokens = append(tokens, endBlockMarker)
numLiterals, numOffsets := w.indexTokens(tokens)
// Generate codegen and codegenFrequencies, which indicates how to encode
// the literalEncoding and the offsetEncoding.
w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
w.codegenEncoding.generate(w.codegenFreq[:], 7)
size, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, 0)
// Store bytes, if we don't get a reasonable improvement.
if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
w.writeStoredHeader(len(input), eof)
w.writeBytes(input)
return
}
// Write Huffman table.
w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
// Write the tokens.
w.writeTokens(tokens, w.literalEncoding.codes, w.offsetEncoding.codes)
}
// indexTokens indexes a slice of tokens, and updates
// literalFreq and offsetFreq, and generates literalEncoding
// and offsetEncoding.
// The number of literal and offset tokens is returned.
func (w *huffmanBitWriter) indexTokens(tokens []token) (numLiterals, numOffsets int) {
for i := range w.literalFreq {
w.literalFreq[i] = 0
}
for i := range w.offsetFreq {
w.offsetFreq[i] = 0
}
for _, t := range tokens {
if t < matchType {
w.literalFreq[t.literal()]++
continue
}
length := t.length()
offset := t.offset()
w.literalFreq[lengthCodesStart+lengthCode(length)]++
w.offsetFreq[offsetCode(offset)]++
}
// get the number of literals
numLiterals = len(w.literalFreq)
for w.literalFreq[numLiterals-1] == 0 {
numLiterals--
}
// get the number of offsets
numOffsets = len(w.offsetFreq)
for numOffsets > 0 && w.offsetFreq[numOffsets-1] == 0 {
numOffsets--
}
if numOffsets == 0 {
// We haven't found a single match. If we want to go with the dynamic encoding,
// we should count at least one offset to be sure that the offset huffman tree could be encoded.
w.offsetFreq[0] = 1
numOffsets = 1
}
w.literalEncoding.generate(w.literalFreq, 15)
w.offsetEncoding.generate(w.offsetFreq, 15)
return
}
// writeTokens writes a slice of tokens to the output.
// codes for literal and offset encoding must be supplied.
func (w *huffmanBitWriter) writeTokens(tokens []token, leCodes, oeCodes []hcode) {
if w.err != nil {
return
}
for _, t := range tokens {
if t < matchType {
w.writeCode(leCodes[t.literal()])
continue
}
// Write the length
length := t.length()
lengthCode := lengthCode(length)
w.writeCode(leCodes[lengthCode+lengthCodesStart])
extraLengthBits := uint(lengthExtraBits[lengthCode])
if extraLengthBits > 0 {
extraLength := int32(length - lengthBase[lengthCode])
w.writeBits(extraLength, extraLengthBits)
}
// Write the offset
offset := t.offset()
offsetCode := offsetCode(offset)
w.writeCode(oeCodes[offsetCode])
extraOffsetBits := uint(offsetExtraBits[offsetCode])
if extraOffsetBits > 0 {
extraOffset := int32(offset - offsetBase[offsetCode])
w.writeBits(extraOffset, extraOffsetBits)
}
}
}
// huffOffset is a static offset encoder used for huffman only encoding.
// It can be reused since we will not be encoding offset values.
var huffOffset *huffmanEncoder
func init() {
w := newHuffmanBitWriter(nil)
w.offsetFreq[0] = 1
huffOffset = newHuffmanEncoder(offsetCodeCount)
huffOffset.generate(w.offsetFreq, 15)
}
// writeBlockHuff encodes a block of bytes as either
// Huffman encoded literals or uncompressed bytes if the
// results only gains very little from compression.
func (w *huffmanBitWriter) writeBlockHuff(eof bool, input []byte) {
if w.err != nil {
return
}
// Clear histogram
for i := range w.literalFreq {
w.literalFreq[i] = 0
}
// Add everything as literals
histogram(input, w.literalFreq)
w.literalFreq[endBlockMarker] = 1
const numLiterals = endBlockMarker + 1
const numOffsets = 1
w.literalEncoding.generate(w.literalFreq, 15)
// Figure out smallest code.
// Always use dynamic Huffman or Store
var numCodegens int
// Generate codegen and codegenFrequencies, which indicates how to encode
// the literalEncoding and the offsetEncoding.
w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, huffOffset)
w.codegenEncoding.generate(w.codegenFreq[:], 7)
size, numCodegens := w.dynamicSize(w.literalEncoding, huffOffset, 0)
// Store bytes, if we don't get a reasonable improvement.
if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
w.writeStoredHeader(len(input), eof)
w.writeBytes(input)
return
}
// Huffman.
w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
encoding := w.literalEncoding.codes[:257]
n := w.nbytes
for _, t := range input {
// Bitwriting inlined, ~30% speedup
c := encoding[t]
w.bits |= uint64(c.code) << w.nbits
w.nbits += uint(c.len)
if w.nbits < 48 {
continue
}
// Store 6 bytes
bits := w.bits
w.bits >>= 48
w.nbits -= 48
bytes := w.bytes[n : n+6]
bytes[0] = byte(bits)
bytes[1] = byte(bits >> 8)
bytes[2] = byte(bits >> 16)
bytes[3] = byte(bits >> 24)
bytes[4] = byte(bits >> 32)
bytes[5] = byte(bits >> 40)
n += 6
if n < bufferFlushSize {
continue
}
w.write(w.bytes[:n])
if w.err != nil {
return // Return early in the event of write failures
}
n = 0
}
w.nbytes = n
w.writeCode(encoding[endBlockMarker])
}