1
1
mirror of https://github.com/go-gitea/gitea synced 2025-01-12 02:34:28 +00:00
zeripath 704da08fdc
Better logging (#6038) (#6095)
* Panic don't fatal on create new logger

Fixes #5854

Signed-off-by: Andrew Thornton <art27@cantab.net>

* partial broken

* Update the logging infrastrcture

Signed-off-by: Andrew Thornton <art27@cantab.net>

* Reset the skip levels for Fatal and Error

Signed-off-by: Andrew Thornton <art27@cantab.net>

* broken ncsa

* More log.Error fixes

Signed-off-by: Andrew Thornton <art27@cantab.net>

* Remove nal

* set log-levels to lowercase

* Make console_test test all levels

* switch to lowercased levels

* OK now working

* Fix vetting issues

* Fix lint

* Fix tests

* change default logging to match current gitea

* Improve log testing

Signed-off-by: Andrew Thornton <art27@cantab.net>

* reset error skip levels to 0

* Update documentation and access logger configuration

* Redirect the router log back to gitea if redirect macaron log but also allow setting the log level - i.e. TRACE

* Fix broken level caching

* Refactor the router log

* Add Router logger

* Add colorizing options

* Adjust router colors

* Only create logger if they will be used

* update app.ini.sample

* rename Attribute ColorAttribute

* Change from white to green for function

* Set fatal/error levels

* Restore initial trace logger

* Fix Trace arguments in modules/auth/auth.go

* Properly handle XORMLogger

* Improve admin/config page

* fix fmt

* Add auto-compression of old logs

* Update error log levels

* Remove the unnecessary skip argument from Error, Fatal and Critical

* Add stacktrace support

* Fix tests

* Remove x/sync from vendors?

* Add stderr option to console logger

* Use filepath.ToSlash to protect against Windows in tests

* Remove prefixed underscores from names in colors.go

* Remove not implemented database logger

This was removed from Gogs on 4 Mar 2016 but left in the configuration
since then.

* Ensure that log paths are relative to ROOT_PATH

* use path.Join

* rename jsonConfig to logConfig

* Rename "config" to "jsonConfig" to make it clearer

* Requested changes

* Requested changes: XormLogger

* Try to color the windows terminal

If successful default to colorizing the console logs

* fixup

* Colorize initially too

* update vendor

* Colorize logs on default and remove if this is not a colorizing logger

* Fix documentation

* fix test

* Use go-isatty to detect if on windows we are on msys or cygwin

* Fix spelling mistake

* Add missing vendors

* More changes

* Rationalise the ANSI writer protection

* Adjust colors on advice from @0x5c

* Make Flags a comma separated list

* Move to use the windows constant for ENABLE_VIRTUAL_TERMINAL_PROCESSING

* Ensure matching is done on the non-colored message - to simpify EXPRESSION
2019-04-02 08:48:31 +01:00
..
2019-03-27 19:15:23 +08:00
2019-04-02 08:48:31 +01:00
2019-04-02 08:48:31 +01:00
2019-04-02 08:48:31 +01:00
2019-04-02 08:48:31 +01:00
2019-04-02 08:48:31 +01:00
2019-04-02 08:48:31 +01:00
2019-04-02 08:48:31 +01:00
2019-03-27 19:15:23 +08:00
2019-04-02 08:48:31 +01:00
2018-10-26 19:18:40 -04:00
2019-04-02 08:48:31 +01:00
2018-10-26 19:18:40 -04:00
2019-04-02 08:48:31 +01:00
2019-04-02 08:48:31 +01:00
2019-04-02 08:48:31 +01:00
2019-04-02 08:48:31 +01:00

Building sys/unix

The sys/unix package provides access to the raw system call interface of the underlying operating system. See: https://godoc.org/golang.org/x/sys/unix

Porting Go to a new architecture/OS combination or adding syscalls, types, or constants to an existing architecture/OS pair requires some manual effort; however, there are tools that automate much of the process.

Build Systems

There are currently two ways we generate the necessary files. We are currently migrating the build system to use containers so the builds are reproducible. This is being done on an OS-by-OS basis. Please update this documentation as components of the build system change.

Old Build System (currently for GOOS != "linux")

The old build system generates the Go files based on the C header files present on your system. This means that files for a given GOOS/GOARCH pair must be generated on a system with that OS and architecture. This also means that the generated code can differ from system to system, based on differences in the header files.

To avoid this, if you are using the old build system, only generate the Go files on an installation with unmodified header files. It is also important to keep track of which version of the OS the files were generated from (ex. Darwin 14 vs Darwin 15). This makes it easier to track the progress of changes and have each OS upgrade correspond to a single change.

To build the files for your current OS and architecture, make sure GOOS and GOARCH are set correctly and run mkall.sh. This will generate the files for your specific system. Running mkall.sh -n shows the commands that will be run.

Requirements: bash, go

New Build System (currently for GOOS == "linux")

The new build system uses a Docker container to generate the go files directly from source checkouts of the kernel and various system libraries. This means that on any platform that supports Docker, all the files using the new build system can be generated at once, and generated files will not change based on what the person running the scripts has installed on their computer.

The OS specific files for the new build system are located in the ${GOOS} directory, and the build is coordinated by the ${GOOS}/mkall.go program. When the kernel or system library updates, modify the Dockerfile at ${GOOS}/Dockerfile to checkout the new release of the source.

To build all the files under the new build system, you must be on an amd64/Linux system and have your GOOS and GOARCH set accordingly. Running mkall.sh will then generate all of the files for all of the GOOS/GOARCH pairs in the new build system. Running mkall.sh -n shows the commands that will be run.

Requirements: bash, go, docker

Component files

This section describes the various files used in the code generation process. It also contains instructions on how to modify these files to add a new architecture/OS or to add additional syscalls, types, or constants. Note that if you are using the new build system, the scripts/programs cannot be called normally. They must be called from within the docker container.

asm files

The hand-written assembly file at asm_${GOOS}_${GOARCH}.s implements system call dispatch. There are three entry points:

  func Syscall(trap, a1, a2, a3 uintptr) (r1, r2, err uintptr)
  func Syscall6(trap, a1, a2, a3, a4, a5, a6 uintptr) (r1, r2, err uintptr)
  func RawSyscall(trap, a1, a2, a3 uintptr) (r1, r2, err uintptr)

The first and second are the standard ones; they differ only in how many arguments can be passed to the kernel. The third is for low-level use by the ForkExec wrapper. Unlike the first two, it does not call into the scheduler to let it know that a system call is running.

When porting Go to an new architecture/OS, this file must be implemented for each GOOS/GOARCH pair.

mksysnum

Mksysnum is a Go program located at ${GOOS}/mksysnum.go (or mksysnum_${GOOS}.go for the old system). This program takes in a list of header files containing the syscall number declarations and parses them to produce the corresponding list of Go numeric constants. See zsysnum_${GOOS}_${GOARCH}.go for the generated constants.

Adding new syscall numbers is mostly done by running the build on a sufficiently new installation of the target OS (or updating the source checkouts for the new build system). However, depending on the OS, you make need to update the parsing in mksysnum.

mksyscall.go

The syscall.go, syscall_${GOOS}.go, syscall_${GOOS}_${GOARCH}.go are hand-written Go files which implement system calls (for unix, the specific OS, or the specific OS/Architecture pair respectively) that need special handling and list //sys comments giving prototypes for ones that can be generated.

The mksyscall.go program takes the //sys and //sysnb comments and converts them into syscalls. This requires the name of the prototype in the comment to match a syscall number in the zsysnum_${GOOS}_${GOARCH}.go file. The function prototype can be exported (capitalized) or not.

Adding a new syscall often just requires adding a new //sys function prototype with the desired arguments and a capitalized name so it is exported. However, if you want the interface to the syscall to be different, often one will make an unexported //sys prototype, an then write a custom wrapper in syscall_${GOOS}.go.

types files

For each OS, there is a hand-written Go file at ${GOOS}/types.go (or types_${GOOS}.go on the old system). This file includes standard C headers and creates Go type aliases to the corresponding C types. The file is then fed through godef to get the Go compatible definitions. Finally, the generated code is fed though mkpost.go to format the code correctly and remove any hidden or private identifiers. This cleaned-up code is written to ztypes_${GOOS}_${GOARCH}.go.

The hardest part about preparing this file is figuring out which headers to include and which symbols need to be #defined to get the actual data structures that pass through to the kernel system calls. Some C libraries preset alternate versions for binary compatibility and translate them on the way in and out of system calls, but there is almost always a #define that can get the real ones. See types_darwin.go and linux/types.go for examples.

To add a new type, add in the necessary include statement at the top of the file (if it is not already there) and add in a type alias line. Note that if your type is significantly different on different architectures, you may need some #if/#elif macros in your include statements.

mkerrors.sh

This script is used to generate the system's various constants. This doesn't just include the error numbers and error strings, but also the signal numbers an a wide variety of miscellaneous constants. The constants come from the list of include files in the includes_${uname} variable. A regex then picks out the desired #define statements, and generates the corresponding Go constants. The error numbers and strings are generated from #include <errno.h>, and the signal numbers and strings are generated from #include <signal.h>. All of these constants are written to zerrors_${GOOS}_${GOARCH}.go via a C program, _errors.c, which prints out all the constants.

To add a constant, add the header that includes it to the appropriate variable. Then, edit the regex (if necessary) to match the desired constant. Avoid making the regex too broad to avoid matching unintended constants.

Generated files

zerror_${GOOS}_${GOARCH}.go

A file containing all of the system's generated error numbers, error strings, signal numbers, and constants. Generated by mkerrors.sh (see above).

zsyscall_${GOOS}_${GOARCH}.go

A file containing all the generated syscalls for a specific GOOS and GOARCH. Generated by mksyscall.go (see above).

zsysnum_${GOOS}_${GOARCH}.go

A list of numeric constants for all the syscall number of the specific GOOS and GOARCH. Generated by mksysnum (see above).

ztypes_${GOOS}_${GOARCH}.go

A file containing Go types for passing into (or returning from) syscalls. Generated by godefs and the types file (see above).