1
1
mirror of https://github.com/go-gitea/gitea synced 2024-11-17 23:54:25 +00:00
gitea/vendor/github.com/stretchr/testify/assert/assertions.go
Antoine GIRARD 256b178176
Update swagger to 0.20.1 (#8010)
* update swagger to 0.20.1

* fiw swagger version for validate
2019-08-28 08:55:22 +02:00

1499 lines
41 KiB
Go

package assert
import (
"bufio"
"bytes"
"encoding/json"
"errors"
"fmt"
"math"
"os"
"reflect"
"regexp"
"runtime"
"strings"
"time"
"unicode"
"unicode/utf8"
"github.com/davecgh/go-spew/spew"
"github.com/pmezard/go-difflib/difflib"
yaml "gopkg.in/yaml.v2"
)
//go:generate go run ../_codegen/main.go -output-package=assert -template=assertion_format.go.tmpl
// TestingT is an interface wrapper around *testing.T
type TestingT interface {
Errorf(format string, args ...interface{})
}
// ComparisonAssertionFunc is a common function prototype when comparing two values. Can be useful
// for table driven tests.
type ComparisonAssertionFunc func(TestingT, interface{}, interface{}, ...interface{}) bool
// ValueAssertionFunc is a common function prototype when validating a single value. Can be useful
// for table driven tests.
type ValueAssertionFunc func(TestingT, interface{}, ...interface{}) bool
// BoolAssertionFunc is a common function prototype when validating a bool value. Can be useful
// for table driven tests.
type BoolAssertionFunc func(TestingT, bool, ...interface{}) bool
// ErrorAssertionFunc is a common function prototype when validating an error value. Can be useful
// for table driven tests.
type ErrorAssertionFunc func(TestingT, error, ...interface{}) bool
// Comparison a custom function that returns true on success and false on failure
type Comparison func() (success bool)
/*
Helper functions
*/
// ObjectsAreEqual determines if two objects are considered equal.
//
// This function does no assertion of any kind.
func ObjectsAreEqual(expected, actual interface{}) bool {
if expected == nil || actual == nil {
return expected == actual
}
exp, ok := expected.([]byte)
if !ok {
return reflect.DeepEqual(expected, actual)
}
act, ok := actual.([]byte)
if !ok {
return false
}
if exp == nil || act == nil {
return exp == nil && act == nil
}
return bytes.Equal(exp, act)
}
// ObjectsAreEqualValues gets whether two objects are equal, or if their
// values are equal.
func ObjectsAreEqualValues(expected, actual interface{}) bool {
if ObjectsAreEqual(expected, actual) {
return true
}
actualType := reflect.TypeOf(actual)
if actualType == nil {
return false
}
expectedValue := reflect.ValueOf(expected)
if expectedValue.IsValid() && expectedValue.Type().ConvertibleTo(actualType) {
// Attempt comparison after type conversion
return reflect.DeepEqual(expectedValue.Convert(actualType).Interface(), actual)
}
return false
}
/* CallerInfo is necessary because the assert functions use the testing object
internally, causing it to print the file:line of the assert method, rather than where
the problem actually occurred in calling code.*/
// CallerInfo returns an array of strings containing the file and line number
// of each stack frame leading from the current test to the assert call that
// failed.
func CallerInfo() []string {
pc := uintptr(0)
file := ""
line := 0
ok := false
name := ""
callers := []string{}
for i := 0; ; i++ {
pc, file, line, ok = runtime.Caller(i)
if !ok {
// The breaks below failed to terminate the loop, and we ran off the
// end of the call stack.
break
}
// This is a huge edge case, but it will panic if this is the case, see #180
if file == "<autogenerated>" {
break
}
f := runtime.FuncForPC(pc)
if f == nil {
break
}
name = f.Name()
// testing.tRunner is the standard library function that calls
// tests. Subtests are called directly by tRunner, without going through
// the Test/Benchmark/Example function that contains the t.Run calls, so
// with subtests we should break when we hit tRunner, without adding it
// to the list of callers.
if name == "testing.tRunner" {
break
}
parts := strings.Split(file, "/")
file = parts[len(parts)-1]
if len(parts) > 1 {
dir := parts[len(parts)-2]
if (dir != "assert" && dir != "mock" && dir != "require") || file == "mock_test.go" {
callers = append(callers, fmt.Sprintf("%s:%d", file, line))
}
}
// Drop the package
segments := strings.Split(name, ".")
name = segments[len(segments)-1]
if isTest(name, "Test") ||
isTest(name, "Benchmark") ||
isTest(name, "Example") {
break
}
}
return callers
}
// Stolen from the `go test` tool.
// isTest tells whether name looks like a test (or benchmark, according to prefix).
// It is a Test (say) if there is a character after Test that is not a lower-case letter.
// We don't want TesticularCancer.
func isTest(name, prefix string) bool {
if !strings.HasPrefix(name, prefix) {
return false
}
if len(name) == len(prefix) { // "Test" is ok
return true
}
rune, _ := utf8.DecodeRuneInString(name[len(prefix):])
return !unicode.IsLower(rune)
}
func messageFromMsgAndArgs(msgAndArgs ...interface{}) string {
if len(msgAndArgs) == 0 || msgAndArgs == nil {
return ""
}
if len(msgAndArgs) == 1 {
msg := msgAndArgs[0]
if msgAsStr, ok := msg.(string); ok {
return msgAsStr
}
return fmt.Sprintf("%+v", msg)
}
if len(msgAndArgs) > 1 {
return fmt.Sprintf(msgAndArgs[0].(string), msgAndArgs[1:]...)
}
return ""
}
// Aligns the provided message so that all lines after the first line start at the same location as the first line.
// Assumes that the first line starts at the correct location (after carriage return, tab, label, spacer and tab).
// The longestLabelLen parameter specifies the length of the longest label in the output (required becaues this is the
// basis on which the alignment occurs).
func indentMessageLines(message string, longestLabelLen int) string {
outBuf := new(bytes.Buffer)
for i, scanner := 0, bufio.NewScanner(strings.NewReader(message)); scanner.Scan(); i++ {
// no need to align first line because it starts at the correct location (after the label)
if i != 0 {
// append alignLen+1 spaces to align with "{{longestLabel}}:" before adding tab
outBuf.WriteString("\n\t" + strings.Repeat(" ", longestLabelLen+1) + "\t")
}
outBuf.WriteString(scanner.Text())
}
return outBuf.String()
}
type failNower interface {
FailNow()
}
// FailNow fails test
func FailNow(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
Fail(t, failureMessage, msgAndArgs...)
// We cannot extend TestingT with FailNow() and
// maintain backwards compatibility, so we fallback
// to panicking when FailNow is not available in
// TestingT.
// See issue #263
if t, ok := t.(failNower); ok {
t.FailNow()
} else {
panic("test failed and t is missing `FailNow()`")
}
return false
}
// Fail reports a failure through
func Fail(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
content := []labeledContent{
{"Error Trace", strings.Join(CallerInfo(), "\n\t\t\t")},
{"Error", failureMessage},
}
// Add test name if the Go version supports it
if n, ok := t.(interface {
Name() string
}); ok {
content = append(content, labeledContent{"Test", n.Name()})
}
message := messageFromMsgAndArgs(msgAndArgs...)
if len(message) > 0 {
content = append(content, labeledContent{"Messages", message})
}
t.Errorf("\n%s", ""+labeledOutput(content...))
return false
}
type labeledContent struct {
label string
content string
}
// labeledOutput returns a string consisting of the provided labeledContent. Each labeled output is appended in the following manner:
//
// \t{{label}}:{{align_spaces}}\t{{content}}\n
//
// The initial carriage return is required to undo/erase any padding added by testing.T.Errorf. The "\t{{label}}:" is for the label.
// If a label is shorter than the longest label provided, padding spaces are added to make all the labels match in length. Once this
// alignment is achieved, "\t{{content}}\n" is added for the output.
//
// If the content of the labeledOutput contains line breaks, the subsequent lines are aligned so that they start at the same location as the first line.
func labeledOutput(content ...labeledContent) string {
longestLabel := 0
for _, v := range content {
if len(v.label) > longestLabel {
longestLabel = len(v.label)
}
}
var output string
for _, v := range content {
output += "\t" + v.label + ":" + strings.Repeat(" ", longestLabel-len(v.label)) + "\t" + indentMessageLines(v.content, longestLabel) + "\n"
}
return output
}
// Implements asserts that an object is implemented by the specified interface.
//
// assert.Implements(t, (*MyInterface)(nil), new(MyObject))
func Implements(t TestingT, interfaceObject interface{}, object interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
interfaceType := reflect.TypeOf(interfaceObject).Elem()
if object == nil {
return Fail(t, fmt.Sprintf("Cannot check if nil implements %v", interfaceType), msgAndArgs...)
}
if !reflect.TypeOf(object).Implements(interfaceType) {
return Fail(t, fmt.Sprintf("%T must implement %v", object, interfaceType), msgAndArgs...)
}
return true
}
// IsType asserts that the specified objects are of the same type.
func IsType(t TestingT, expectedType interface{}, object interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if !ObjectsAreEqual(reflect.TypeOf(object), reflect.TypeOf(expectedType)) {
return Fail(t, fmt.Sprintf("Object expected to be of type %v, but was %v", reflect.TypeOf(expectedType), reflect.TypeOf(object)), msgAndArgs...)
}
return true
}
// Equal asserts that two objects are equal.
//
// assert.Equal(t, 123, 123)
//
// Pointer variable equality is determined based on the equality of the
// referenced values (as opposed to the memory addresses). Function equality
// cannot be determined and will always fail.
func Equal(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if err := validateEqualArgs(expected, actual); err != nil {
return Fail(t, fmt.Sprintf("Invalid operation: %#v == %#v (%s)",
expected, actual, err), msgAndArgs...)
}
if !ObjectsAreEqual(expected, actual) {
diff := diff(expected, actual)
expected, actual = formatUnequalValues(expected, actual)
return Fail(t, fmt.Sprintf("Not equal: \n"+
"expected: %s\n"+
"actual : %s%s", expected, actual, diff), msgAndArgs...)
}
return true
}
// Same asserts that two pointers reference the same object.
//
// assert.Same(t, ptr1, ptr2)
//
// Both arguments must be pointer variables. Pointer variable sameness is
// determined based on the equality of both type and value.
func Same(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
expectedPtr, actualPtr := reflect.ValueOf(expected), reflect.ValueOf(actual)
if expectedPtr.Kind() != reflect.Ptr || actualPtr.Kind() != reflect.Ptr {
return Fail(t, "Invalid operation: both arguments must be pointers", msgAndArgs...)
}
expectedType, actualType := reflect.TypeOf(expected), reflect.TypeOf(actual)
if expectedType != actualType {
return Fail(t, fmt.Sprintf("Pointer expected to be of type %v, but was %v",
expectedType, actualType), msgAndArgs...)
}
if expected != actual {
return Fail(t, fmt.Sprintf("Not same: \n"+
"expected: %p %#v\n"+
"actual : %p %#v", expected, expected, actual, actual), msgAndArgs...)
}
return true
}
// formatUnequalValues takes two values of arbitrary types and returns string
// representations appropriate to be presented to the user.
//
// If the values are not of like type, the returned strings will be prefixed
// with the type name, and the value will be enclosed in parenthesis similar
// to a type conversion in the Go grammar.
func formatUnequalValues(expected, actual interface{}) (e string, a string) {
if reflect.TypeOf(expected) != reflect.TypeOf(actual) {
return fmt.Sprintf("%T(%#v)", expected, expected),
fmt.Sprintf("%T(%#v)", actual, actual)
}
return fmt.Sprintf("%#v", expected),
fmt.Sprintf("%#v", actual)
}
// EqualValues asserts that two objects are equal or convertable to the same types
// and equal.
//
// assert.EqualValues(t, uint32(123), int32(123))
func EqualValues(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if !ObjectsAreEqualValues(expected, actual) {
diff := diff(expected, actual)
expected, actual = formatUnequalValues(expected, actual)
return Fail(t, fmt.Sprintf("Not equal: \n"+
"expected: %s\n"+
"actual : %s%s", expected, actual, diff), msgAndArgs...)
}
return true
}
// Exactly asserts that two objects are equal in value and type.
//
// assert.Exactly(t, int32(123), int64(123))
func Exactly(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
aType := reflect.TypeOf(expected)
bType := reflect.TypeOf(actual)
if aType != bType {
return Fail(t, fmt.Sprintf("Types expected to match exactly\n\t%v != %v", aType, bType), msgAndArgs...)
}
return Equal(t, expected, actual, msgAndArgs...)
}
// NotNil asserts that the specified object is not nil.
//
// assert.NotNil(t, err)
func NotNil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if !isNil(object) {
return true
}
return Fail(t, "Expected value not to be nil.", msgAndArgs...)
}
// containsKind checks if a specified kind in the slice of kinds.
func containsKind(kinds []reflect.Kind, kind reflect.Kind) bool {
for i := 0; i < len(kinds); i++ {
if kind == kinds[i] {
return true
}
}
return false
}
// isNil checks if a specified object is nil or not, without Failing.
func isNil(object interface{}) bool {
if object == nil {
return true
}
value := reflect.ValueOf(object)
kind := value.Kind()
isNilableKind := containsKind(
[]reflect.Kind{
reflect.Chan, reflect.Func,
reflect.Interface, reflect.Map,
reflect.Ptr, reflect.Slice},
kind)
if isNilableKind && value.IsNil() {
return true
}
return false
}
// Nil asserts that the specified object is nil.
//
// assert.Nil(t, err)
func Nil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if isNil(object) {
return true
}
return Fail(t, fmt.Sprintf("Expected nil, but got: %#v", object), msgAndArgs...)
}
// isEmpty gets whether the specified object is considered empty or not.
func isEmpty(object interface{}) bool {
// get nil case out of the way
if object == nil {
return true
}
objValue := reflect.ValueOf(object)
switch objValue.Kind() {
// collection types are empty when they have no element
case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice:
return objValue.Len() == 0
// pointers are empty if nil or if the value they point to is empty
case reflect.Ptr:
if objValue.IsNil() {
return true
}
deref := objValue.Elem().Interface()
return isEmpty(deref)
// for all other types, compare against the zero value
default:
zero := reflect.Zero(objValue.Type())
return reflect.DeepEqual(object, zero.Interface())
}
}
// Empty asserts that the specified object is empty. I.e. nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// assert.Empty(t, obj)
func Empty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
pass := isEmpty(object)
if !pass {
Fail(t, fmt.Sprintf("Should be empty, but was %v", object), msgAndArgs...)
}
return pass
}
// NotEmpty asserts that the specified object is NOT empty. I.e. not nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// if assert.NotEmpty(t, obj) {
// assert.Equal(t, "two", obj[1])
// }
func NotEmpty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
pass := !isEmpty(object)
if !pass {
Fail(t, fmt.Sprintf("Should NOT be empty, but was %v", object), msgAndArgs...)
}
return pass
}
// getLen try to get length of object.
// return (false, 0) if impossible.
func getLen(x interface{}) (ok bool, length int) {
v := reflect.ValueOf(x)
defer func() {
if e := recover(); e != nil {
ok = false
}
}()
return true, v.Len()
}
// Len asserts that the specified object has specific length.
// Len also fails if the object has a type that len() not accept.
//
// assert.Len(t, mySlice, 3)
func Len(t TestingT, object interface{}, length int, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
ok, l := getLen(object)
if !ok {
return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", object), msgAndArgs...)
}
if l != length {
return Fail(t, fmt.Sprintf("\"%s\" should have %d item(s), but has %d", object, length, l), msgAndArgs...)
}
return true
}
// True asserts that the specified value is true.
//
// assert.True(t, myBool)
func True(t TestingT, value bool, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if h, ok := t.(interface {
Helper()
}); ok {
h.Helper()
}
if value != true {
return Fail(t, "Should be true", msgAndArgs...)
}
return true
}
// False asserts that the specified value is false.
//
// assert.False(t, myBool)
func False(t TestingT, value bool, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if value != false {
return Fail(t, "Should be false", msgAndArgs...)
}
return true
}
// NotEqual asserts that the specified values are NOT equal.
//
// assert.NotEqual(t, obj1, obj2)
//
// Pointer variable equality is determined based on the equality of the
// referenced values (as opposed to the memory addresses).
func NotEqual(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if err := validateEqualArgs(expected, actual); err != nil {
return Fail(t, fmt.Sprintf("Invalid operation: %#v != %#v (%s)",
expected, actual, err), msgAndArgs...)
}
if ObjectsAreEqual(expected, actual) {
return Fail(t, fmt.Sprintf("Should not be: %#v\n", actual), msgAndArgs...)
}
return true
}
// containsElement try loop over the list check if the list includes the element.
// return (false, false) if impossible.
// return (true, false) if element was not found.
// return (true, true) if element was found.
func includeElement(list interface{}, element interface{}) (ok, found bool) {
listValue := reflect.ValueOf(list)
listKind := reflect.TypeOf(list).Kind()
defer func() {
if e := recover(); e != nil {
ok = false
found = false
}
}()
if listKind == reflect.String {
elementValue := reflect.ValueOf(element)
return true, strings.Contains(listValue.String(), elementValue.String())
}
if listKind == reflect.Map {
mapKeys := listValue.MapKeys()
for i := 0; i < len(mapKeys); i++ {
if ObjectsAreEqual(mapKeys[i].Interface(), element) {
return true, true
}
}
return true, false
}
for i := 0; i < listValue.Len(); i++ {
if ObjectsAreEqual(listValue.Index(i).Interface(), element) {
return true, true
}
}
return true, false
}
// Contains asserts that the specified string, list(array, slice...) or map contains the
// specified substring or element.
//
// assert.Contains(t, "Hello World", "World")
// assert.Contains(t, ["Hello", "World"], "World")
// assert.Contains(t, {"Hello": "World"}, "Hello")
func Contains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
ok, found := includeElement(s, contains)
if !ok {
return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", s), msgAndArgs...)
}
if !found {
return Fail(t, fmt.Sprintf("\"%s\" does not contain \"%s\"", s, contains), msgAndArgs...)
}
return true
}
// NotContains asserts that the specified string, list(array, slice...) or map does NOT contain the
// specified substring or element.
//
// assert.NotContains(t, "Hello World", "Earth")
// assert.NotContains(t, ["Hello", "World"], "Earth")
// assert.NotContains(t, {"Hello": "World"}, "Earth")
func NotContains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
ok, found := includeElement(s, contains)
if !ok {
return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", s), msgAndArgs...)
}
if found {
return Fail(t, fmt.Sprintf("\"%s\" should not contain \"%s\"", s, contains), msgAndArgs...)
}
return true
}
// Subset asserts that the specified list(array, slice...) contains all
// elements given in the specified subset(array, slice...).
//
// assert.Subset(t, [1, 2, 3], [1, 2], "But [1, 2, 3] does contain [1, 2]")
func Subset(t TestingT, list, subset interface{}, msgAndArgs ...interface{}) (ok bool) {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if subset == nil {
return true // we consider nil to be equal to the nil set
}
subsetValue := reflect.ValueOf(subset)
defer func() {
if e := recover(); e != nil {
ok = false
}
}()
listKind := reflect.TypeOf(list).Kind()
subsetKind := reflect.TypeOf(subset).Kind()
if listKind != reflect.Array && listKind != reflect.Slice {
return Fail(t, fmt.Sprintf("%q has an unsupported type %s", list, listKind), msgAndArgs...)
}
if subsetKind != reflect.Array && subsetKind != reflect.Slice {
return Fail(t, fmt.Sprintf("%q has an unsupported type %s", subset, subsetKind), msgAndArgs...)
}
for i := 0; i < subsetValue.Len(); i++ {
element := subsetValue.Index(i).Interface()
ok, found := includeElement(list, element)
if !ok {
return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", list), msgAndArgs...)
}
if !found {
return Fail(t, fmt.Sprintf("\"%s\" does not contain \"%s\"", list, element), msgAndArgs...)
}
}
return true
}
// NotSubset asserts that the specified list(array, slice...) contains not all
// elements given in the specified subset(array, slice...).
//
// assert.NotSubset(t, [1, 3, 4], [1, 2], "But [1, 3, 4] does not contain [1, 2]")
func NotSubset(t TestingT, list, subset interface{}, msgAndArgs ...interface{}) (ok bool) {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if subset == nil {
return Fail(t, fmt.Sprintf("nil is the empty set which is a subset of every set"), msgAndArgs...)
}
subsetValue := reflect.ValueOf(subset)
defer func() {
if e := recover(); e != nil {
ok = false
}
}()
listKind := reflect.TypeOf(list).Kind()
subsetKind := reflect.TypeOf(subset).Kind()
if listKind != reflect.Array && listKind != reflect.Slice {
return Fail(t, fmt.Sprintf("%q has an unsupported type %s", list, listKind), msgAndArgs...)
}
if subsetKind != reflect.Array && subsetKind != reflect.Slice {
return Fail(t, fmt.Sprintf("%q has an unsupported type %s", subset, subsetKind), msgAndArgs...)
}
for i := 0; i < subsetValue.Len(); i++ {
element := subsetValue.Index(i).Interface()
ok, found := includeElement(list, element)
if !ok {
return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", list), msgAndArgs...)
}
if !found {
return true
}
}
return Fail(t, fmt.Sprintf("%q is a subset of %q", subset, list), msgAndArgs...)
}
// ElementsMatch asserts that the specified listA(array, slice...) is equal to specified
// listB(array, slice...) ignoring the order of the elements. If there are duplicate elements,
// the number of appearances of each of them in both lists should match.
//
// assert.ElementsMatch(t, [1, 3, 2, 3], [1, 3, 3, 2])
func ElementsMatch(t TestingT, listA, listB interface{}, msgAndArgs ...interface{}) (ok bool) {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if isEmpty(listA) && isEmpty(listB) {
return true
}
aKind := reflect.TypeOf(listA).Kind()
bKind := reflect.TypeOf(listB).Kind()
if aKind != reflect.Array && aKind != reflect.Slice {
return Fail(t, fmt.Sprintf("%q has an unsupported type %s", listA, aKind), msgAndArgs...)
}
if bKind != reflect.Array && bKind != reflect.Slice {
return Fail(t, fmt.Sprintf("%q has an unsupported type %s", listB, bKind), msgAndArgs...)
}
aValue := reflect.ValueOf(listA)
bValue := reflect.ValueOf(listB)
aLen := aValue.Len()
bLen := bValue.Len()
if aLen != bLen {
return Fail(t, fmt.Sprintf("lengths don't match: %d != %d", aLen, bLen), msgAndArgs...)
}
// Mark indexes in bValue that we already used
visited := make([]bool, bLen)
for i := 0; i < aLen; i++ {
element := aValue.Index(i).Interface()
found := false
for j := 0; j < bLen; j++ {
if visited[j] {
continue
}
if ObjectsAreEqual(bValue.Index(j).Interface(), element) {
visited[j] = true
found = true
break
}
}
if !found {
return Fail(t, fmt.Sprintf("element %s appears more times in %s than in %s", element, aValue, bValue), msgAndArgs...)
}
}
return true
}
// Condition uses a Comparison to assert a complex condition.
func Condition(t TestingT, comp Comparison, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
result := comp()
if !result {
Fail(t, "Condition failed!", msgAndArgs...)
}
return result
}
// PanicTestFunc defines a func that should be passed to the assert.Panics and assert.NotPanics
// methods, and represents a simple func that takes no arguments, and returns nothing.
type PanicTestFunc func()
// didPanic returns true if the function passed to it panics. Otherwise, it returns false.
func didPanic(f PanicTestFunc) (bool, interface{}) {
didPanic := false
var message interface{}
func() {
defer func() {
if message = recover(); message != nil {
didPanic = true
}
}()
// call the target function
f()
}()
return didPanic, message
}
// Panics asserts that the code inside the specified PanicTestFunc panics.
//
// assert.Panics(t, func(){ GoCrazy() })
func Panics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if funcDidPanic, panicValue := didPanic(f); !funcDidPanic {
return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%#v", f, panicValue), msgAndArgs...)
}
return true
}
// PanicsWithValue asserts that the code inside the specified PanicTestFunc panics, and that
// the recovered panic value equals the expected panic value.
//
// assert.PanicsWithValue(t, "crazy error", func(){ GoCrazy() })
func PanicsWithValue(t TestingT, expected interface{}, f PanicTestFunc, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
funcDidPanic, panicValue := didPanic(f)
if !funcDidPanic {
return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%#v", f, panicValue), msgAndArgs...)
}
if panicValue != expected {
return Fail(t, fmt.Sprintf("func %#v should panic with value:\t%#v\n\tPanic value:\t%#v", f, expected, panicValue), msgAndArgs...)
}
return true
}
// NotPanics asserts that the code inside the specified PanicTestFunc does NOT panic.
//
// assert.NotPanics(t, func(){ RemainCalm() })
func NotPanics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if funcDidPanic, panicValue := didPanic(f); funcDidPanic {
return Fail(t, fmt.Sprintf("func %#v should not panic\n\tPanic value:\t%v", f, panicValue), msgAndArgs...)
}
return true
}
// WithinDuration asserts that the two times are within duration delta of each other.
//
// assert.WithinDuration(t, time.Now(), time.Now(), 10*time.Second)
func WithinDuration(t TestingT, expected, actual time.Time, delta time.Duration, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
dt := expected.Sub(actual)
if dt < -delta || dt > delta {
return Fail(t, fmt.Sprintf("Max difference between %v and %v allowed is %v, but difference was %v", expected, actual, delta, dt), msgAndArgs...)
}
return true
}
func toFloat(x interface{}) (float64, bool) {
var xf float64
xok := true
switch xn := x.(type) {
case uint8:
xf = float64(xn)
case uint16:
xf = float64(xn)
case uint32:
xf = float64(xn)
case uint64:
xf = float64(xn)
case int:
xf = float64(xn)
case int8:
xf = float64(xn)
case int16:
xf = float64(xn)
case int32:
xf = float64(xn)
case int64:
xf = float64(xn)
case float32:
xf = float64(xn)
case float64:
xf = float64(xn)
case time.Duration:
xf = float64(xn)
default:
xok = false
}
return xf, xok
}
// InDelta asserts that the two numerals are within delta of each other.
//
// assert.InDelta(t, math.Pi, (22 / 7.0), 0.01)
func InDelta(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
af, aok := toFloat(expected)
bf, bok := toFloat(actual)
if !aok || !bok {
return Fail(t, fmt.Sprintf("Parameters must be numerical"), msgAndArgs...)
}
if math.IsNaN(af) {
return Fail(t, fmt.Sprintf("Expected must not be NaN"), msgAndArgs...)
}
if math.IsNaN(bf) {
return Fail(t, fmt.Sprintf("Expected %v with delta %v, but was NaN", expected, delta), msgAndArgs...)
}
dt := af - bf
if dt < -delta || dt > delta {
return Fail(t, fmt.Sprintf("Max difference between %v and %v allowed is %v, but difference was %v", expected, actual, delta, dt), msgAndArgs...)
}
return true
}
// InDeltaSlice is the same as InDelta, except it compares two slices.
func InDeltaSlice(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if expected == nil || actual == nil ||
reflect.TypeOf(actual).Kind() != reflect.Slice ||
reflect.TypeOf(expected).Kind() != reflect.Slice {
return Fail(t, fmt.Sprintf("Parameters must be slice"), msgAndArgs...)
}
actualSlice := reflect.ValueOf(actual)
expectedSlice := reflect.ValueOf(expected)
for i := 0; i < actualSlice.Len(); i++ {
result := InDelta(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), delta, msgAndArgs...)
if !result {
return result
}
}
return true
}
// InDeltaMapValues is the same as InDelta, but it compares all values between two maps. Both maps must have exactly the same keys.
func InDeltaMapValues(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if expected == nil || actual == nil ||
reflect.TypeOf(actual).Kind() != reflect.Map ||
reflect.TypeOf(expected).Kind() != reflect.Map {
return Fail(t, "Arguments must be maps", msgAndArgs...)
}
expectedMap := reflect.ValueOf(expected)
actualMap := reflect.ValueOf(actual)
if expectedMap.Len() != actualMap.Len() {
return Fail(t, "Arguments must have the same number of keys", msgAndArgs...)
}
for _, k := range expectedMap.MapKeys() {
ev := expectedMap.MapIndex(k)
av := actualMap.MapIndex(k)
if !ev.IsValid() {
return Fail(t, fmt.Sprintf("missing key %q in expected map", k), msgAndArgs...)
}
if !av.IsValid() {
return Fail(t, fmt.Sprintf("missing key %q in actual map", k), msgAndArgs...)
}
if !InDelta(
t,
ev.Interface(),
av.Interface(),
delta,
msgAndArgs...,
) {
return false
}
}
return true
}
func calcRelativeError(expected, actual interface{}) (float64, error) {
af, aok := toFloat(expected)
if !aok {
return 0, fmt.Errorf("expected value %q cannot be converted to float", expected)
}
if af == 0 {
return 0, fmt.Errorf("expected value must have a value other than zero to calculate the relative error")
}
bf, bok := toFloat(actual)
if !bok {
return 0, fmt.Errorf("actual value %q cannot be converted to float", actual)
}
return math.Abs(af-bf) / math.Abs(af), nil
}
// InEpsilon asserts that expected and actual have a relative error less than epsilon
func InEpsilon(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
actualEpsilon, err := calcRelativeError(expected, actual)
if err != nil {
return Fail(t, err.Error(), msgAndArgs...)
}
if actualEpsilon > epsilon {
return Fail(t, fmt.Sprintf("Relative error is too high: %#v (expected)\n"+
" < %#v (actual)", epsilon, actualEpsilon), msgAndArgs...)
}
return true
}
// InEpsilonSlice is the same as InEpsilon, except it compares each value from two slices.
func InEpsilonSlice(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if expected == nil || actual == nil ||
reflect.TypeOf(actual).Kind() != reflect.Slice ||
reflect.TypeOf(expected).Kind() != reflect.Slice {
return Fail(t, fmt.Sprintf("Parameters must be slice"), msgAndArgs...)
}
actualSlice := reflect.ValueOf(actual)
expectedSlice := reflect.ValueOf(expected)
for i := 0; i < actualSlice.Len(); i++ {
result := InEpsilon(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), epsilon)
if !result {
return result
}
}
return true
}
/*
Errors
*/
// NoError asserts that a function returned no error (i.e. `nil`).
//
// actualObj, err := SomeFunction()
// if assert.NoError(t, err) {
// assert.Equal(t, expectedObj, actualObj)
// }
func NoError(t TestingT, err error, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if err != nil {
return Fail(t, fmt.Sprintf("Received unexpected error:\n%+v", err), msgAndArgs...)
}
return true
}
// Error asserts that a function returned an error (i.e. not `nil`).
//
// actualObj, err := SomeFunction()
// if assert.Error(t, err) {
// assert.Equal(t, expectedError, err)
// }
func Error(t TestingT, err error, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if err == nil {
return Fail(t, "An error is expected but got nil.", msgAndArgs...)
}
return true
}
// EqualError asserts that a function returned an error (i.e. not `nil`)
// and that it is equal to the provided error.
//
// actualObj, err := SomeFunction()
// assert.EqualError(t, err, expectedErrorString)
func EqualError(t TestingT, theError error, errString string, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if !Error(t, theError, msgAndArgs...) {
return false
}
expected := errString
actual := theError.Error()
// don't need to use deep equals here, we know they are both strings
if expected != actual {
return Fail(t, fmt.Sprintf("Error message not equal:\n"+
"expected: %q\n"+
"actual : %q", expected, actual), msgAndArgs...)
}
return true
}
// matchRegexp return true if a specified regexp matches a string.
func matchRegexp(rx interface{}, str interface{}) bool {
var r *regexp.Regexp
if rr, ok := rx.(*regexp.Regexp); ok {
r = rr
} else {
r = regexp.MustCompile(fmt.Sprint(rx))
}
return (r.FindStringIndex(fmt.Sprint(str)) != nil)
}
// Regexp asserts that a specified regexp matches a string.
//
// assert.Regexp(t, regexp.MustCompile("start"), "it's starting")
// assert.Regexp(t, "start...$", "it's not starting")
func Regexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
match := matchRegexp(rx, str)
if !match {
Fail(t, fmt.Sprintf("Expect \"%v\" to match \"%v\"", str, rx), msgAndArgs...)
}
return match
}
// NotRegexp asserts that a specified regexp does not match a string.
//
// assert.NotRegexp(t, regexp.MustCompile("starts"), "it's starting")
// assert.NotRegexp(t, "^start", "it's not starting")
func NotRegexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
match := matchRegexp(rx, str)
if match {
Fail(t, fmt.Sprintf("Expect \"%v\" to NOT match \"%v\"", str, rx), msgAndArgs...)
}
return !match
}
// Zero asserts that i is the zero value for its type.
func Zero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if i != nil && !reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) {
return Fail(t, fmt.Sprintf("Should be zero, but was %v", i), msgAndArgs...)
}
return true
}
// NotZero asserts that i is not the zero value for its type.
func NotZero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if i == nil || reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) {
return Fail(t, fmt.Sprintf("Should not be zero, but was %v", i), msgAndArgs...)
}
return true
}
// FileExists checks whether a file exists in the given path. It also fails if the path points to a directory or there is an error when trying to check the file.
func FileExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
info, err := os.Lstat(path)
if err != nil {
if os.IsNotExist(err) {
return Fail(t, fmt.Sprintf("unable to find file %q", path), msgAndArgs...)
}
return Fail(t, fmt.Sprintf("error when running os.Lstat(%q): %s", path, err), msgAndArgs...)
}
if info.IsDir() {
return Fail(t, fmt.Sprintf("%q is a directory", path), msgAndArgs...)
}
return true
}
// DirExists checks whether a directory exists in the given path. It also fails if the path is a file rather a directory or there is an error checking whether it exists.
func DirExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
info, err := os.Lstat(path)
if err != nil {
if os.IsNotExist(err) {
return Fail(t, fmt.Sprintf("unable to find file %q", path), msgAndArgs...)
}
return Fail(t, fmt.Sprintf("error when running os.Lstat(%q): %s", path, err), msgAndArgs...)
}
if !info.IsDir() {
return Fail(t, fmt.Sprintf("%q is a file", path), msgAndArgs...)
}
return true
}
// JSONEq asserts that two JSON strings are equivalent.
//
// assert.JSONEq(t, `{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`)
func JSONEq(t TestingT, expected string, actual string, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
var expectedJSONAsInterface, actualJSONAsInterface interface{}
if err := json.Unmarshal([]byte(expected), &expectedJSONAsInterface); err != nil {
return Fail(t, fmt.Sprintf("Expected value ('%s') is not valid json.\nJSON parsing error: '%s'", expected, err.Error()), msgAndArgs...)
}
if err := json.Unmarshal([]byte(actual), &actualJSONAsInterface); err != nil {
return Fail(t, fmt.Sprintf("Input ('%s') needs to be valid json.\nJSON parsing error: '%s'", actual, err.Error()), msgAndArgs...)
}
return Equal(t, expectedJSONAsInterface, actualJSONAsInterface, msgAndArgs...)
}
// YAMLEq asserts that two YAML strings are equivalent.
func YAMLEq(t TestingT, expected string, actual string, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
var expectedYAMLAsInterface, actualYAMLAsInterface interface{}
if err := yaml.Unmarshal([]byte(expected), &expectedYAMLAsInterface); err != nil {
return Fail(t, fmt.Sprintf("Expected value ('%s') is not valid yaml.\nYAML parsing error: '%s'", expected, err.Error()), msgAndArgs...)
}
if err := yaml.Unmarshal([]byte(actual), &actualYAMLAsInterface); err != nil {
return Fail(t, fmt.Sprintf("Input ('%s') needs to be valid yaml.\nYAML error: '%s'", actual, err.Error()), msgAndArgs...)
}
return Equal(t, expectedYAMLAsInterface, actualYAMLAsInterface, msgAndArgs...)
}
func typeAndKind(v interface{}) (reflect.Type, reflect.Kind) {
t := reflect.TypeOf(v)
k := t.Kind()
if k == reflect.Ptr {
t = t.Elem()
k = t.Kind()
}
return t, k
}
// diff returns a diff of both values as long as both are of the same type and
// are a struct, map, slice, array or string. Otherwise it returns an empty string.
func diff(expected interface{}, actual interface{}) string {
if expected == nil || actual == nil {
return ""
}
et, ek := typeAndKind(expected)
at, _ := typeAndKind(actual)
if et != at {
return ""
}
if ek != reflect.Struct && ek != reflect.Map && ek != reflect.Slice && ek != reflect.Array && ek != reflect.String {
return ""
}
var e, a string
if et != reflect.TypeOf("") {
e = spewConfig.Sdump(expected)
a = spewConfig.Sdump(actual)
} else {
e = reflect.ValueOf(expected).String()
a = reflect.ValueOf(actual).String()
}
diff, _ := difflib.GetUnifiedDiffString(difflib.UnifiedDiff{
A: difflib.SplitLines(e),
B: difflib.SplitLines(a),
FromFile: "Expected",
FromDate: "",
ToFile: "Actual",
ToDate: "",
Context: 1,
})
return "\n\nDiff:\n" + diff
}
// validateEqualArgs checks whether provided arguments can be safely used in the
// Equal/NotEqual functions.
func validateEqualArgs(expected, actual interface{}) error {
if isFunction(expected) || isFunction(actual) {
return errors.New("cannot take func type as argument")
}
return nil
}
func isFunction(arg interface{}) bool {
if arg == nil {
return false
}
return reflect.TypeOf(arg).Kind() == reflect.Func
}
var spewConfig = spew.ConfigState{
Indent: " ",
DisablePointerAddresses: true,
DisableCapacities: true,
SortKeys: true,
}
type tHelper interface {
Helper()
}
// Eventually asserts that given condition will be met in waitFor time,
// periodically checking target function each tick.
//
// assert.Eventually(t, func() bool { return true; }, time.Second, 10*time.Millisecond)
func Eventually(t TestingT, condition func() bool, waitFor time.Duration, tick time.Duration, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
timer := time.NewTimer(waitFor)
ticker := time.NewTicker(tick)
checkPassed := make(chan bool)
defer timer.Stop()
defer ticker.Stop()
defer close(checkPassed)
for {
select {
case <-timer.C:
return Fail(t, "Condition never satisfied", msgAndArgs...)
case result := <-checkPassed:
if result {
return true
}
case <-ticker.C:
go func() {
checkPassed <- condition()
}()
}
}
}