1
1
mirror of https://github.com/go-gitea/gitea synced 2025-01-26 17:44:27 +00:00
6543 86e2789960
Vendor Update (#16121)
* update github.com/PuerkitoBio/goquery

* update github.com/alecthomas/chroma

* update github.com/blevesearch/bleve/v2

* update github.com/caddyserver/certmagic

* update github.com/go-enry/go-enry/v2

* update github.com/go-git/go-billy/v5

* update github.com/go-git/go-git/v5

* update github.com/go-redis/redis/v8

* update github.com/go-testfixtures/testfixtures/v3

* update github.com/jaytaylor/html2text

* update github.com/json-iterator/go

* update github.com/klauspost/compress

* update github.com/markbates/goth

* update github.com/mattn/go-isatty

* update github.com/mholt/archiver/v3

* update github.com/microcosm-cc/bluemonday

* update github.com/minio/minio-go/v7

* update github.com/prometheus/client_golang

* update github.com/unrolled/render

* update github.com/xanzy/go-gitlab

* update github.com/yuin/goldmark

* update github.com/yuin/goldmark-highlighting

Co-authored-by: techknowlogick <techknowlogick@gitea.io>
2021-06-10 16:44:25 +02:00

368 lines
9.4 KiB
Go
Vendored

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package s2k implements the various OpenPGP string-to-key transforms as
// specified in RFC 4800 section 3.7.1.
package s2k // import "github.com/ProtonMail/go-crypto/openpgp/s2k"
import (
"crypto"
"hash"
"io"
"strconv"
"github.com/ProtonMail/go-crypto/openpgp/errors"
"github.com/ProtonMail/go-crypto/openpgp/internal/algorithm"
)
// Config collects configuration parameters for s2k key-stretching
// transformations. A nil *Config is valid and results in all default
// values. Currently, Config is used only by the Serialize function in
// this package.
type Config struct {
// S2KMode is the mode of s2k function.
// It can be 0 (simple), 1(salted), 3(iterated)
// 2(reserved) 100-110(private/experimental).
S2KMode uint8
// Hash is the default hash function to be used. If
// nil, SHA256 is used.
Hash crypto.Hash
// S2KCount is only used for symmetric encryption. It
// determines the strength of the passphrase stretching when
// the said passphrase is hashed to produce a key. S2KCount
// should be between 65536 and 65011712, inclusive. If Config
// is nil or S2KCount is 0, the value 16777216 used. Not all
// values in the above range can be represented. S2KCount will
// be rounded up to the next representable value if it cannot
// be encoded exactly. See RFC 4880 Section 3.7.1.3.
S2KCount int
}
// Params contains all the parameters of the s2k packet
type Params struct {
// mode is the mode of s2k function.
// It can be 0 (simple), 1(salted), 3(iterated)
// 2(reserved) 100-110(private/experimental).
mode uint8
// hashId is the ID of the hash function used in any of the modes
hashId byte
// salt is a byte array to use as a salt in hashing process
salt []byte
// countByte is used to determine how many rounds of hashing are to
// be performed in s2k mode 3. See RFC 4880 Section 3.7.1.3.
countByte byte
}
func (c *Config) hash() crypto.Hash {
if c == nil || uint(c.Hash) == 0 {
return crypto.SHA256
}
return c.Hash
}
// EncodedCount get encoded count
func (c *Config) EncodedCount() uint8 {
if c == nil || c.S2KCount == 0 {
return 224 // The common case. Corresponding to 16777216
}
i := c.S2KCount
switch {
case i < 65536:
i = 65536
case i > 65011712:
i = 65011712
}
return encodeCount(i)
}
// encodeCount converts an iterative "count" in the range 1024 to
// 65011712, inclusive, to an encoded count. The return value is the
// octet that is actually stored in the GPG file. encodeCount panics
// if i is not in the above range (encodedCount above takes care to
// pass i in the correct range). See RFC 4880 Section 3.7.7.1.
func encodeCount(i int) uint8 {
if i < 65536 || i > 65011712 {
panic("count arg i outside the required range")
}
for encoded := 96; encoded < 256; encoded++ {
count := decodeCount(uint8(encoded))
if count >= i {
return uint8(encoded)
}
}
return 255
}
// decodeCount returns the s2k mode 3 iterative "count" corresponding to
// the encoded octet c.
func decodeCount(c uint8) int {
return (16 + int(c&15)) << (uint32(c>>4) + 6)
}
// Simple writes to out the result of computing the Simple S2K function (RFC
// 4880, section 3.7.1.1) using the given hash and input passphrase.
func Simple(out []byte, h hash.Hash, in []byte) {
Salted(out, h, in, nil)
}
var zero [1]byte
// Salted writes to out the result of computing the Salted S2K function (RFC
// 4880, section 3.7.1.2) using the given hash, input passphrase and salt.
func Salted(out []byte, h hash.Hash, in []byte, salt []byte) {
done := 0
var digest []byte
for i := 0; done < len(out); i++ {
h.Reset()
for j := 0; j < i; j++ {
h.Write(zero[:])
}
h.Write(salt)
h.Write(in)
digest = h.Sum(digest[:0])
n := copy(out[done:], digest)
done += n
}
}
// Iterated writes to out the result of computing the Iterated and Salted S2K
// function (RFC 4880, section 3.7.1.3) using the given hash, input passphrase,
// salt and iteration count.
func Iterated(out []byte, h hash.Hash, in []byte, salt []byte, count int) {
combined := make([]byte, len(in)+len(salt))
copy(combined, salt)
copy(combined[len(salt):], in)
if count < len(combined) {
count = len(combined)
}
done := 0
var digest []byte
for i := 0; done < len(out); i++ {
h.Reset()
for j := 0; j < i; j++ {
h.Write(zero[:])
}
written := 0
for written < count {
if written+len(combined) > count {
todo := count - written
h.Write(combined[:todo])
written = count
} else {
h.Write(combined)
written += len(combined)
}
}
digest = h.Sum(digest[:0])
n := copy(out[done:], digest)
done += n
}
}
// Generate generates valid parameters from given configuration.
// It will enforce salted + hashed s2k method
func Generate(rand io.Reader, c *Config) (*Params, error) {
hashId, ok := HashToHashId(c.Hash)
if !ok {
return nil, errors.UnsupportedError("no such hash")
}
params := &Params{
mode: 3, // Enforce iterared + salted method
hashId: hashId,
salt: make([]byte, 8),
countByte: c.EncodedCount(),
}
if _, err := io.ReadFull(rand, params.salt); err != nil {
return nil, err
}
return params, nil
}
// Parse reads a binary specification for a string-to-key transformation from r
// and returns a function which performs that transform. If the S2K is a special
// GNU extension that indicates that the private key is missing, then the error
// returned is errors.ErrDummyPrivateKey.
func Parse(r io.Reader) (f func(out, in []byte), err error) {
params, err := ParseIntoParams(r)
if err != nil {
return nil, err
}
return params.Function()
}
// ParseIntoParams reads a binary specification for a string-to-key
// transformation from r and returns a struct describing the s2k parameters.
func ParseIntoParams(r io.Reader) (params *Params, err error) {
var buf [9]byte
_, err = io.ReadFull(r, buf[:2])
if err != nil {
return
}
params = &Params{
mode: buf[0],
hashId: buf[1],
}
switch params.mode {
case 0:
return params, nil
case 1:
_, err = io.ReadFull(r, buf[:8])
if err != nil {
return nil, err
}
params.salt = buf[:8]
return params, nil
case 3:
_, err = io.ReadFull(r, buf[:9])
if err != nil {
return nil, err
}
params.salt = buf[:8]
params.countByte = buf[8]
return params, nil
case 101:
// This is a GNU extension. See
// https://git.gnupg.org/cgi-bin/gitweb.cgi?p=gnupg.git;a=blob;f=doc/DETAILS;h=fe55ae16ab4e26d8356dc574c9e8bc935e71aef1;hb=23191d7851eae2217ecdac6484349849a24fd94a#l1109
if _, err = io.ReadFull(r, buf[:4]); err != nil {
return nil, err
}
if buf[0] == 'G' && buf[1] == 'N' && buf[2] == 'U' && buf[3] == 1 {
return params, nil
}
return nil, errors.UnsupportedError("GNU S2K extension")
}
return nil, errors.UnsupportedError("S2K function")
}
func (params *Params) Dummy() bool {
return params != nil && params.mode == 101
}
func (params *Params) Function() (f func(out, in []byte), err error) {
if params.Dummy() {
return nil, errors.ErrDummyPrivateKey("dummy key found")
}
hashObj, ok := HashIdToHash(params.hashId)
if !ok {
return nil, errors.UnsupportedError("hash for S2K function: " + strconv.Itoa(int(params.hashId)))
}
if !hashObj.Available() {
return nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hashObj)))
}
switch params.mode {
case 0:
f := func(out, in []byte) {
Simple(out, hashObj.New(), in)
}
return f, nil
case 1:
f := func(out, in []byte) {
Salted(out, hashObj.New(), in, params.salt)
}
return f, nil
case 3:
f := func(out, in []byte) {
Iterated(out, hashObj.New(), in, params.salt, decodeCount(params.countByte))
}
return f, nil
}
return nil, errors.UnsupportedError("S2K function")
}
func (params *Params) Serialize(w io.Writer) (err error) {
if _, err = w.Write([]byte{params.mode}); err != nil {
return
}
if _, err = w.Write([]byte{params.hashId}); err != nil {
return
}
if params.Dummy() {
_, err = w.Write(append([]byte("GNU"), 1))
return
}
if params.mode > 0 {
if _, err = w.Write(params.salt); err != nil {
return
}
if params.mode == 3 {
_, err = w.Write([]byte{params.countByte})
}
}
return
}
// Serialize salts and stretches the given passphrase and writes the
// resulting key into key. It also serializes an S2K descriptor to
// w. The key stretching can be configured with c, which may be
// nil. In that case, sensible defaults will be used.
func Serialize(w io.Writer, key []byte, rand io.Reader, passphrase []byte, c *Config) error {
params, err := Generate(rand, c)
if err != nil {
return err
}
err = params.Serialize(w)
if err != nil {
return err
}
f, err := params.Function()
if err != nil {
return err
}
f(key, passphrase)
return nil
}
// HashIdToHash returns a crypto.Hash which corresponds to the given OpenPGP
// hash id.
func HashIdToHash(id byte) (h crypto.Hash, ok bool) {
if hash, ok := algorithm.HashById[id]; ok {
return hash.HashFunc(), true
}
return 0, false
}
// HashIdToString returns the name of the hash function corresponding to the
// given OpenPGP hash id.
func HashIdToString(id byte) (name string, ok bool) {
if hash, ok := algorithm.HashById[id]; ok {
return hash.String(), true
}
return "", false
}
// HashIdToHash returns an OpenPGP hash id which corresponds the given Hash.
func HashToHashId(h crypto.Hash) (id byte, ok bool) {
for id, hash := range algorithm.HashById {
if hash.HashFunc() == h {
return id, true
}
}
return 0, false
}