mirror of
https://github.com/go-gitea/gitea
synced 2024-11-09 11:44:27 +00:00
af7ffaa279
* Server-side syntax hilighting for all code This PR does a few things: * Remove all traces of highlight.js * Use chroma library to provide fast syntax hilighting directly on the server * Provide syntax hilighting for diffs * Re-style both unified and split diffs views * Add custom syntax hilighting styling for both regular and arc-green Fixes #7729 Fixes #10157 Fixes #11825 Fixes #7728 Fixes #3872 Fixes #3682 And perhaps gets closer to #9553 * fix line marker * fix repo search * Fix single line select * properly load settings * npm uninstall highlight.js * review suggestion * code review * forgot to call function * fix test * Apply suggestions from code review suggestions from @silverwind thanks Co-authored-by: silverwind <me@silverwind.io> * code review * copy/paste error * Use const for highlight size limit * Update web_src/less/_repository.less Co-authored-by: Lauris BH <lauris@nix.lv> * update size limit to 1MB and other styling tweaks * fix highlighting for certain diff sections * fix test * add worker back as suggested Co-authored-by: silverwind <me@silverwind.io> Co-authored-by: Lauris BH <lauris@nix.lv>
897 lines
19 KiB
Go
Vendored
897 lines
19 KiB
Go
Vendored
package syntax
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"strconv"
|
|
"unicode"
|
|
"unicode/utf8"
|
|
)
|
|
|
|
type Prefix struct {
|
|
PrefixStr []rune
|
|
PrefixSet CharSet
|
|
CaseInsensitive bool
|
|
}
|
|
|
|
// It takes a RegexTree and computes the set of chars that can start it.
|
|
func getFirstCharsPrefix(tree *RegexTree) *Prefix {
|
|
s := regexFcd{
|
|
fcStack: make([]regexFc, 32),
|
|
intStack: make([]int, 32),
|
|
}
|
|
fc := s.regexFCFromRegexTree(tree)
|
|
|
|
if fc == nil || fc.nullable || fc.cc.IsEmpty() {
|
|
return nil
|
|
}
|
|
fcSet := fc.getFirstChars()
|
|
return &Prefix{PrefixSet: fcSet, CaseInsensitive: fc.caseInsensitive}
|
|
}
|
|
|
|
type regexFcd struct {
|
|
intStack []int
|
|
intDepth int
|
|
fcStack []regexFc
|
|
fcDepth int
|
|
skipAllChildren bool // don't process any more children at the current level
|
|
skipchild bool // don't process the current child.
|
|
failed bool
|
|
}
|
|
|
|
/*
|
|
* The main FC computation. It does a shortcutted depth-first walk
|
|
* through the tree and calls CalculateFC to emits code before
|
|
* and after each child of an interior node, and at each leaf.
|
|
*/
|
|
func (s *regexFcd) regexFCFromRegexTree(tree *RegexTree) *regexFc {
|
|
curNode := tree.root
|
|
curChild := 0
|
|
|
|
for {
|
|
if len(curNode.children) == 0 {
|
|
// This is a leaf node
|
|
s.calculateFC(curNode.t, curNode, 0)
|
|
} else if curChild < len(curNode.children) && !s.skipAllChildren {
|
|
// This is an interior node, and we have more children to analyze
|
|
s.calculateFC(curNode.t|beforeChild, curNode, curChild)
|
|
|
|
if !s.skipchild {
|
|
curNode = curNode.children[curChild]
|
|
// this stack is how we get a depth first walk of the tree.
|
|
s.pushInt(curChild)
|
|
curChild = 0
|
|
} else {
|
|
curChild++
|
|
s.skipchild = false
|
|
}
|
|
continue
|
|
}
|
|
|
|
// This is an interior node where we've finished analyzing all the children, or
|
|
// the end of a leaf node.
|
|
s.skipAllChildren = false
|
|
|
|
if s.intIsEmpty() {
|
|
break
|
|
}
|
|
|
|
curChild = s.popInt()
|
|
curNode = curNode.next
|
|
|
|
s.calculateFC(curNode.t|afterChild, curNode, curChild)
|
|
if s.failed {
|
|
return nil
|
|
}
|
|
|
|
curChild++
|
|
}
|
|
|
|
if s.fcIsEmpty() {
|
|
return nil
|
|
}
|
|
|
|
return s.popFC()
|
|
}
|
|
|
|
// To avoid recursion, we use a simple integer stack.
|
|
// This is the push.
|
|
func (s *regexFcd) pushInt(I int) {
|
|
if s.intDepth >= len(s.intStack) {
|
|
expanded := make([]int, s.intDepth*2)
|
|
copy(expanded, s.intStack)
|
|
s.intStack = expanded
|
|
}
|
|
|
|
s.intStack[s.intDepth] = I
|
|
s.intDepth++
|
|
}
|
|
|
|
// True if the stack is empty.
|
|
func (s *regexFcd) intIsEmpty() bool {
|
|
return s.intDepth == 0
|
|
}
|
|
|
|
// This is the pop.
|
|
func (s *regexFcd) popInt() int {
|
|
s.intDepth--
|
|
return s.intStack[s.intDepth]
|
|
}
|
|
|
|
// We also use a stack of RegexFC objects.
|
|
// This is the push.
|
|
func (s *regexFcd) pushFC(fc regexFc) {
|
|
if s.fcDepth >= len(s.fcStack) {
|
|
expanded := make([]regexFc, s.fcDepth*2)
|
|
copy(expanded, s.fcStack)
|
|
s.fcStack = expanded
|
|
}
|
|
|
|
s.fcStack[s.fcDepth] = fc
|
|
s.fcDepth++
|
|
}
|
|
|
|
// True if the stack is empty.
|
|
func (s *regexFcd) fcIsEmpty() bool {
|
|
return s.fcDepth == 0
|
|
}
|
|
|
|
// This is the pop.
|
|
func (s *regexFcd) popFC() *regexFc {
|
|
s.fcDepth--
|
|
return &s.fcStack[s.fcDepth]
|
|
}
|
|
|
|
// This is the top.
|
|
func (s *regexFcd) topFC() *regexFc {
|
|
return &s.fcStack[s.fcDepth-1]
|
|
}
|
|
|
|
// Called in Beforechild to prevent further processing of the current child
|
|
func (s *regexFcd) skipChild() {
|
|
s.skipchild = true
|
|
}
|
|
|
|
// FC computation and shortcut cases for each node type
|
|
func (s *regexFcd) calculateFC(nt nodeType, node *regexNode, CurIndex int) {
|
|
//fmt.Printf("NodeType: %v, CurIndex: %v, Desc: %v\n", nt, CurIndex, node.description())
|
|
ci := false
|
|
rtl := false
|
|
|
|
if nt <= ntRef {
|
|
if (node.options & IgnoreCase) != 0 {
|
|
ci = true
|
|
}
|
|
if (node.options & RightToLeft) != 0 {
|
|
rtl = true
|
|
}
|
|
}
|
|
|
|
switch nt {
|
|
case ntConcatenate | beforeChild, ntAlternate | beforeChild, ntTestref | beforeChild, ntLoop | beforeChild, ntLazyloop | beforeChild:
|
|
break
|
|
|
|
case ntTestgroup | beforeChild:
|
|
if CurIndex == 0 {
|
|
s.skipChild()
|
|
}
|
|
break
|
|
|
|
case ntEmpty:
|
|
s.pushFC(regexFc{nullable: true})
|
|
break
|
|
|
|
case ntConcatenate | afterChild:
|
|
if CurIndex != 0 {
|
|
child := s.popFC()
|
|
cumul := s.topFC()
|
|
|
|
s.failed = !cumul.addFC(*child, true)
|
|
}
|
|
|
|
fc := s.topFC()
|
|
if !fc.nullable {
|
|
s.skipAllChildren = true
|
|
}
|
|
break
|
|
|
|
case ntTestgroup | afterChild:
|
|
if CurIndex > 1 {
|
|
child := s.popFC()
|
|
cumul := s.topFC()
|
|
|
|
s.failed = !cumul.addFC(*child, false)
|
|
}
|
|
break
|
|
|
|
case ntAlternate | afterChild, ntTestref | afterChild:
|
|
if CurIndex != 0 {
|
|
child := s.popFC()
|
|
cumul := s.topFC()
|
|
|
|
s.failed = !cumul.addFC(*child, false)
|
|
}
|
|
break
|
|
|
|
case ntLoop | afterChild, ntLazyloop | afterChild:
|
|
if node.m == 0 {
|
|
fc := s.topFC()
|
|
fc.nullable = true
|
|
}
|
|
break
|
|
|
|
case ntGroup | beforeChild, ntGroup | afterChild, ntCapture | beforeChild, ntCapture | afterChild, ntGreedy | beforeChild, ntGreedy | afterChild:
|
|
break
|
|
|
|
case ntRequire | beforeChild, ntPrevent | beforeChild:
|
|
s.skipChild()
|
|
s.pushFC(regexFc{nullable: true})
|
|
break
|
|
|
|
case ntRequire | afterChild, ntPrevent | afterChild:
|
|
break
|
|
|
|
case ntOne, ntNotone:
|
|
s.pushFC(newRegexFc(node.ch, nt == ntNotone, false, ci))
|
|
break
|
|
|
|
case ntOneloop, ntOnelazy:
|
|
s.pushFC(newRegexFc(node.ch, false, node.m == 0, ci))
|
|
break
|
|
|
|
case ntNotoneloop, ntNotonelazy:
|
|
s.pushFC(newRegexFc(node.ch, true, node.m == 0, ci))
|
|
break
|
|
|
|
case ntMulti:
|
|
if len(node.str) == 0 {
|
|
s.pushFC(regexFc{nullable: true})
|
|
} else if !rtl {
|
|
s.pushFC(newRegexFc(node.str[0], false, false, ci))
|
|
} else {
|
|
s.pushFC(newRegexFc(node.str[len(node.str)-1], false, false, ci))
|
|
}
|
|
break
|
|
|
|
case ntSet:
|
|
s.pushFC(regexFc{cc: node.set.Copy(), nullable: false, caseInsensitive: ci})
|
|
break
|
|
|
|
case ntSetloop, ntSetlazy:
|
|
s.pushFC(regexFc{cc: node.set.Copy(), nullable: node.m == 0, caseInsensitive: ci})
|
|
break
|
|
|
|
case ntRef:
|
|
s.pushFC(regexFc{cc: *AnyClass(), nullable: true, caseInsensitive: false})
|
|
break
|
|
|
|
case ntNothing, ntBol, ntEol, ntBoundary, ntNonboundary, ntECMABoundary, ntNonECMABoundary, ntBeginning, ntStart, ntEndZ, ntEnd:
|
|
s.pushFC(regexFc{nullable: true})
|
|
break
|
|
|
|
default:
|
|
panic(fmt.Sprintf("unexpected op code: %v", nt))
|
|
}
|
|
}
|
|
|
|
type regexFc struct {
|
|
cc CharSet
|
|
nullable bool
|
|
caseInsensitive bool
|
|
}
|
|
|
|
func newRegexFc(ch rune, not, nullable, caseInsensitive bool) regexFc {
|
|
r := regexFc{
|
|
caseInsensitive: caseInsensitive,
|
|
nullable: nullable,
|
|
}
|
|
if not {
|
|
if ch > 0 {
|
|
r.cc.addRange('\x00', ch-1)
|
|
}
|
|
if ch < 0xFFFF {
|
|
r.cc.addRange(ch+1, utf8.MaxRune)
|
|
}
|
|
} else {
|
|
r.cc.addRange(ch, ch)
|
|
}
|
|
return r
|
|
}
|
|
|
|
func (r *regexFc) getFirstChars() CharSet {
|
|
if r.caseInsensitive {
|
|
r.cc.addLowercase()
|
|
}
|
|
|
|
return r.cc
|
|
}
|
|
|
|
func (r *regexFc) addFC(fc regexFc, concatenate bool) bool {
|
|
if !r.cc.IsMergeable() || !fc.cc.IsMergeable() {
|
|
return false
|
|
}
|
|
|
|
if concatenate {
|
|
if !r.nullable {
|
|
return true
|
|
}
|
|
|
|
if !fc.nullable {
|
|
r.nullable = false
|
|
}
|
|
} else {
|
|
if fc.nullable {
|
|
r.nullable = true
|
|
}
|
|
}
|
|
|
|
r.caseInsensitive = r.caseInsensitive || fc.caseInsensitive
|
|
r.cc.addSet(fc.cc)
|
|
|
|
return true
|
|
}
|
|
|
|
// This is a related computation: it takes a RegexTree and computes the
|
|
// leading substring if it sees one. It's quite trivial and gives up easily.
|
|
func getPrefix(tree *RegexTree) *Prefix {
|
|
var concatNode *regexNode
|
|
nextChild := 0
|
|
|
|
curNode := tree.root
|
|
|
|
for {
|
|
switch curNode.t {
|
|
case ntConcatenate:
|
|
if len(curNode.children) > 0 {
|
|
concatNode = curNode
|
|
nextChild = 0
|
|
}
|
|
|
|
case ntGreedy, ntCapture:
|
|
curNode = curNode.children[0]
|
|
concatNode = nil
|
|
continue
|
|
|
|
case ntOneloop, ntOnelazy:
|
|
if curNode.m > 0 {
|
|
return &Prefix{
|
|
PrefixStr: repeat(curNode.ch, curNode.m),
|
|
CaseInsensitive: (curNode.options & IgnoreCase) != 0,
|
|
}
|
|
}
|
|
return nil
|
|
|
|
case ntOne:
|
|
return &Prefix{
|
|
PrefixStr: []rune{curNode.ch},
|
|
CaseInsensitive: (curNode.options & IgnoreCase) != 0,
|
|
}
|
|
|
|
case ntMulti:
|
|
return &Prefix{
|
|
PrefixStr: curNode.str,
|
|
CaseInsensitive: (curNode.options & IgnoreCase) != 0,
|
|
}
|
|
|
|
case ntBol, ntEol, ntBoundary, ntECMABoundary, ntBeginning, ntStart,
|
|
ntEndZ, ntEnd, ntEmpty, ntRequire, ntPrevent:
|
|
|
|
default:
|
|
return nil
|
|
}
|
|
|
|
if concatNode == nil || nextChild >= len(concatNode.children) {
|
|
return nil
|
|
}
|
|
|
|
curNode = concatNode.children[nextChild]
|
|
nextChild++
|
|
}
|
|
}
|
|
|
|
// repeat the rune r, c times... up to the max of MaxPrefixSize
|
|
func repeat(r rune, c int) []rune {
|
|
if c > MaxPrefixSize {
|
|
c = MaxPrefixSize
|
|
}
|
|
|
|
ret := make([]rune, c)
|
|
|
|
// binary growth using copy for speed
|
|
ret[0] = r
|
|
bp := 1
|
|
for bp < len(ret) {
|
|
copy(ret[bp:], ret[:bp])
|
|
bp *= 2
|
|
}
|
|
|
|
return ret
|
|
}
|
|
|
|
// BmPrefix precomputes the Boyer-Moore
|
|
// tables for fast string scanning. These tables allow
|
|
// you to scan for the first occurrence of a string within
|
|
// a large body of text without examining every character.
|
|
// The performance of the heuristic depends on the actual
|
|
// string and the text being searched, but usually, the longer
|
|
// the string that is being searched for, the fewer characters
|
|
// need to be examined.
|
|
type BmPrefix struct {
|
|
positive []int
|
|
negativeASCII []int
|
|
negativeUnicode [][]int
|
|
pattern []rune
|
|
lowASCII rune
|
|
highASCII rune
|
|
rightToLeft bool
|
|
caseInsensitive bool
|
|
}
|
|
|
|
func newBmPrefix(pattern []rune, caseInsensitive, rightToLeft bool) *BmPrefix {
|
|
|
|
b := &BmPrefix{
|
|
rightToLeft: rightToLeft,
|
|
caseInsensitive: caseInsensitive,
|
|
pattern: pattern,
|
|
}
|
|
|
|
if caseInsensitive {
|
|
for i := 0; i < len(b.pattern); i++ {
|
|
// We do the ToLower character by character for consistency. With surrogate chars, doing
|
|
// a ToLower on the entire string could actually change the surrogate pair. This is more correct
|
|
// linguistically, but since Regex doesn't support surrogates, it's more important to be
|
|
// consistent.
|
|
|
|
b.pattern[i] = unicode.ToLower(b.pattern[i])
|
|
}
|
|
}
|
|
|
|
var beforefirst, last, bump int
|
|
var scan, match int
|
|
|
|
if !rightToLeft {
|
|
beforefirst = -1
|
|
last = len(b.pattern) - 1
|
|
bump = 1
|
|
} else {
|
|
beforefirst = len(b.pattern)
|
|
last = 0
|
|
bump = -1
|
|
}
|
|
|
|
// PART I - the good-suffix shift table
|
|
//
|
|
// compute the positive requirement:
|
|
// if char "i" is the first one from the right that doesn't match,
|
|
// then we know the matcher can advance by _positive[i].
|
|
//
|
|
// This algorithm is a simplified variant of the standard
|
|
// Boyer-Moore good suffix calculation.
|
|
|
|
b.positive = make([]int, len(b.pattern))
|
|
|
|
examine := last
|
|
ch := b.pattern[examine]
|
|
b.positive[examine] = bump
|
|
examine -= bump
|
|
|
|
Outerloop:
|
|
for {
|
|
// find an internal char (examine) that matches the tail
|
|
|
|
for {
|
|
if examine == beforefirst {
|
|
break Outerloop
|
|
}
|
|
if b.pattern[examine] == ch {
|
|
break
|
|
}
|
|
examine -= bump
|
|
}
|
|
|
|
match = last
|
|
scan = examine
|
|
|
|
// find the length of the match
|
|
for {
|
|
if scan == beforefirst || b.pattern[match] != b.pattern[scan] {
|
|
// at the end of the match, note the difference in _positive
|
|
// this is not the length of the match, but the distance from the internal match
|
|
// to the tail suffix.
|
|
if b.positive[match] == 0 {
|
|
b.positive[match] = match - scan
|
|
}
|
|
|
|
// System.Diagnostics.Debug.WriteLine("Set positive[" + match + "] to " + (match - scan));
|
|
|
|
break
|
|
}
|
|
|
|
scan -= bump
|
|
match -= bump
|
|
}
|
|
|
|
examine -= bump
|
|
}
|
|
|
|
match = last - bump
|
|
|
|
// scan for the chars for which there are no shifts that yield a different candidate
|
|
|
|
// The inside of the if statement used to say
|
|
// "_positive[match] = last - beforefirst;"
|
|
// This is slightly less aggressive in how much we skip, but at worst it
|
|
// should mean a little more work rather than skipping a potential match.
|
|
for match != beforefirst {
|
|
if b.positive[match] == 0 {
|
|
b.positive[match] = bump
|
|
}
|
|
|
|
match -= bump
|
|
}
|
|
|
|
// PART II - the bad-character shift table
|
|
//
|
|
// compute the negative requirement:
|
|
// if char "ch" is the reject character when testing position "i",
|
|
// we can slide up by _negative[ch];
|
|
// (_negative[ch] = str.Length - 1 - str.LastIndexOf(ch))
|
|
//
|
|
// the lookup table is divided into ASCII and Unicode portions;
|
|
// only those parts of the Unicode 16-bit code set that actually
|
|
// appear in the string are in the table. (Maximum size with
|
|
// Unicode is 65K; ASCII only case is 512 bytes.)
|
|
|
|
b.negativeASCII = make([]int, 128)
|
|
|
|
for i := 0; i < len(b.negativeASCII); i++ {
|
|
b.negativeASCII[i] = last - beforefirst
|
|
}
|
|
|
|
b.lowASCII = 127
|
|
b.highASCII = 0
|
|
|
|
for examine = last; examine != beforefirst; examine -= bump {
|
|
ch = b.pattern[examine]
|
|
|
|
switch {
|
|
case ch < 128:
|
|
if b.lowASCII > ch {
|
|
b.lowASCII = ch
|
|
}
|
|
|
|
if b.highASCII < ch {
|
|
b.highASCII = ch
|
|
}
|
|
|
|
if b.negativeASCII[ch] == last-beforefirst {
|
|
b.negativeASCII[ch] = last - examine
|
|
}
|
|
case ch <= 0xffff:
|
|
i, j := ch>>8, ch&0xFF
|
|
|
|
if b.negativeUnicode == nil {
|
|
b.negativeUnicode = make([][]int, 256)
|
|
}
|
|
|
|
if b.negativeUnicode[i] == nil {
|
|
newarray := make([]int, 256)
|
|
|
|
for k := 0; k < len(newarray); k++ {
|
|
newarray[k] = last - beforefirst
|
|
}
|
|
|
|
if i == 0 {
|
|
copy(newarray, b.negativeASCII)
|
|
//TODO: this line needed?
|
|
b.negativeASCII = newarray
|
|
}
|
|
|
|
b.negativeUnicode[i] = newarray
|
|
}
|
|
|
|
if b.negativeUnicode[i][j] == last-beforefirst {
|
|
b.negativeUnicode[i][j] = last - examine
|
|
}
|
|
default:
|
|
// we can't do the filter because this algo doesn't support
|
|
// unicode chars >0xffff
|
|
return nil
|
|
}
|
|
}
|
|
|
|
return b
|
|
}
|
|
|
|
func (b *BmPrefix) String() string {
|
|
return string(b.pattern)
|
|
}
|
|
|
|
// Dump returns the contents of the filter as a human readable string
|
|
func (b *BmPrefix) Dump(indent string) string {
|
|
buf := &bytes.Buffer{}
|
|
|
|
fmt.Fprintf(buf, "%sBM Pattern: %s\n%sPositive: ", indent, string(b.pattern), indent)
|
|
for i := 0; i < len(b.positive); i++ {
|
|
buf.WriteString(strconv.Itoa(b.positive[i]))
|
|
buf.WriteRune(' ')
|
|
}
|
|
buf.WriteRune('\n')
|
|
|
|
if b.negativeASCII != nil {
|
|
buf.WriteString(indent)
|
|
buf.WriteString("Negative table\n")
|
|
for i := 0; i < len(b.negativeASCII); i++ {
|
|
if b.negativeASCII[i] != len(b.pattern) {
|
|
fmt.Fprintf(buf, "%s %s %s\n", indent, Escape(string(rune(i))), strconv.Itoa(b.negativeASCII[i]))
|
|
}
|
|
}
|
|
}
|
|
|
|
return buf.String()
|
|
}
|
|
|
|
// Scan uses the Boyer-Moore algorithm to find the first occurrence
|
|
// of the specified string within text, beginning at index, and
|
|
// constrained within beglimit and endlimit.
|
|
//
|
|
// The direction and case-sensitivity of the match is determined
|
|
// by the arguments to the RegexBoyerMoore constructor.
|
|
func (b *BmPrefix) Scan(text []rune, index, beglimit, endlimit int) int {
|
|
var (
|
|
defadv, test, test2 int
|
|
match, startmatch, endmatch int
|
|
bump, advance int
|
|
chTest rune
|
|
unicodeLookup []int
|
|
)
|
|
|
|
if !b.rightToLeft {
|
|
defadv = len(b.pattern)
|
|
startmatch = len(b.pattern) - 1
|
|
endmatch = 0
|
|
test = index + defadv - 1
|
|
bump = 1
|
|
} else {
|
|
defadv = -len(b.pattern)
|
|
startmatch = 0
|
|
endmatch = -defadv - 1
|
|
test = index + defadv
|
|
bump = -1
|
|
}
|
|
|
|
chMatch := b.pattern[startmatch]
|
|
|
|
for {
|
|
if test >= endlimit || test < beglimit {
|
|
return -1
|
|
}
|
|
|
|
chTest = text[test]
|
|
|
|
if b.caseInsensitive {
|
|
chTest = unicode.ToLower(chTest)
|
|
}
|
|
|
|
if chTest != chMatch {
|
|
if chTest < 128 {
|
|
advance = b.negativeASCII[chTest]
|
|
} else if chTest < 0xffff && len(b.negativeUnicode) > 0 {
|
|
unicodeLookup = b.negativeUnicode[chTest>>8]
|
|
if len(unicodeLookup) > 0 {
|
|
advance = unicodeLookup[chTest&0xFF]
|
|
} else {
|
|
advance = defadv
|
|
}
|
|
} else {
|
|
advance = defadv
|
|
}
|
|
|
|
test += advance
|
|
} else { // if (chTest == chMatch)
|
|
test2 = test
|
|
match = startmatch
|
|
|
|
for {
|
|
if match == endmatch {
|
|
if b.rightToLeft {
|
|
return test2 + 1
|
|
} else {
|
|
return test2
|
|
}
|
|
}
|
|
|
|
match -= bump
|
|
test2 -= bump
|
|
|
|
chTest = text[test2]
|
|
|
|
if b.caseInsensitive {
|
|
chTest = unicode.ToLower(chTest)
|
|
}
|
|
|
|
if chTest != b.pattern[match] {
|
|
advance = b.positive[match]
|
|
if (chTest & 0xFF80) == 0 {
|
|
test2 = (match - startmatch) + b.negativeASCII[chTest]
|
|
} else if chTest < 0xffff && len(b.negativeUnicode) > 0 {
|
|
unicodeLookup = b.negativeUnicode[chTest>>8]
|
|
if len(unicodeLookup) > 0 {
|
|
test2 = (match - startmatch) + unicodeLookup[chTest&0xFF]
|
|
} else {
|
|
test += advance
|
|
break
|
|
}
|
|
} else {
|
|
test += advance
|
|
break
|
|
}
|
|
|
|
if b.rightToLeft {
|
|
if test2 < advance {
|
|
advance = test2
|
|
}
|
|
} else if test2 > advance {
|
|
advance = test2
|
|
}
|
|
|
|
test += advance
|
|
break
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// When a regex is anchored, we can do a quick IsMatch test instead of a Scan
|
|
func (b *BmPrefix) IsMatch(text []rune, index, beglimit, endlimit int) bool {
|
|
if !b.rightToLeft {
|
|
if index < beglimit || endlimit-index < len(b.pattern) {
|
|
return false
|
|
}
|
|
|
|
return b.matchPattern(text, index)
|
|
} else {
|
|
if index > endlimit || index-beglimit < len(b.pattern) {
|
|
return false
|
|
}
|
|
|
|
return b.matchPattern(text, index-len(b.pattern))
|
|
}
|
|
}
|
|
|
|
func (b *BmPrefix) matchPattern(text []rune, index int) bool {
|
|
if len(text)-index < len(b.pattern) {
|
|
return false
|
|
}
|
|
|
|
if b.caseInsensitive {
|
|
for i := 0; i < len(b.pattern); i++ {
|
|
//Debug.Assert(textinfo.ToLower(_pattern[i]) == _pattern[i], "pattern should be converted to lower case in constructor!");
|
|
if unicode.ToLower(text[index+i]) != b.pattern[i] {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
} else {
|
|
for i := 0; i < len(b.pattern); i++ {
|
|
if text[index+i] != b.pattern[i] {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
}
|
|
|
|
type AnchorLoc int16
|
|
|
|
// where the regex can be pegged
|
|
const (
|
|
AnchorBeginning AnchorLoc = 0x0001
|
|
AnchorBol = 0x0002
|
|
AnchorStart = 0x0004
|
|
AnchorEol = 0x0008
|
|
AnchorEndZ = 0x0010
|
|
AnchorEnd = 0x0020
|
|
AnchorBoundary = 0x0040
|
|
AnchorECMABoundary = 0x0080
|
|
)
|
|
|
|
func getAnchors(tree *RegexTree) AnchorLoc {
|
|
|
|
var concatNode *regexNode
|
|
nextChild, result := 0, AnchorLoc(0)
|
|
|
|
curNode := tree.root
|
|
|
|
for {
|
|
switch curNode.t {
|
|
case ntConcatenate:
|
|
if len(curNode.children) > 0 {
|
|
concatNode = curNode
|
|
nextChild = 0
|
|
}
|
|
|
|
case ntGreedy, ntCapture:
|
|
curNode = curNode.children[0]
|
|
concatNode = nil
|
|
continue
|
|
|
|
case ntBol, ntEol, ntBoundary, ntECMABoundary, ntBeginning,
|
|
ntStart, ntEndZ, ntEnd:
|
|
return result | anchorFromType(curNode.t)
|
|
|
|
case ntEmpty, ntRequire, ntPrevent:
|
|
|
|
default:
|
|
return result
|
|
}
|
|
|
|
if concatNode == nil || nextChild >= len(concatNode.children) {
|
|
return result
|
|
}
|
|
|
|
curNode = concatNode.children[nextChild]
|
|
nextChild++
|
|
}
|
|
}
|
|
|
|
func anchorFromType(t nodeType) AnchorLoc {
|
|
switch t {
|
|
case ntBol:
|
|
return AnchorBol
|
|
case ntEol:
|
|
return AnchorEol
|
|
case ntBoundary:
|
|
return AnchorBoundary
|
|
case ntECMABoundary:
|
|
return AnchorECMABoundary
|
|
case ntBeginning:
|
|
return AnchorBeginning
|
|
case ntStart:
|
|
return AnchorStart
|
|
case ntEndZ:
|
|
return AnchorEndZ
|
|
case ntEnd:
|
|
return AnchorEnd
|
|
default:
|
|
return 0
|
|
}
|
|
}
|
|
|
|
// anchorDescription returns a human-readable description of the anchors
|
|
func (anchors AnchorLoc) String() string {
|
|
buf := &bytes.Buffer{}
|
|
|
|
if 0 != (anchors & AnchorBeginning) {
|
|
buf.WriteString(", Beginning")
|
|
}
|
|
if 0 != (anchors & AnchorStart) {
|
|
buf.WriteString(", Start")
|
|
}
|
|
if 0 != (anchors & AnchorBol) {
|
|
buf.WriteString(", Bol")
|
|
}
|
|
if 0 != (anchors & AnchorBoundary) {
|
|
buf.WriteString(", Boundary")
|
|
}
|
|
if 0 != (anchors & AnchorECMABoundary) {
|
|
buf.WriteString(", ECMABoundary")
|
|
}
|
|
if 0 != (anchors & AnchorEol) {
|
|
buf.WriteString(", Eol")
|
|
}
|
|
if 0 != (anchors & AnchorEnd) {
|
|
buf.WriteString(", End")
|
|
}
|
|
if 0 != (anchors & AnchorEndZ) {
|
|
buf.WriteString(", EndZ")
|
|
}
|
|
|
|
// trim off comma
|
|
if buf.Len() >= 2 {
|
|
return buf.String()[2:]
|
|
}
|
|
return "None"
|
|
}
|