1
1
mirror of https://github.com/go-gitea/gitea synced 2025-01-12 18:54:28 +00:00
gitea/modules/crypto/ssh/handshake.go
2015-09-24 17:55:01 -04:00

413 lines
10 KiB
Go
Executable File

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssh
import (
"crypto/rand"
"errors"
"fmt"
"io"
"log"
"net"
"sync"
)
// debugHandshake, if set, prints messages sent and received. Key
// exchange messages are printed as if DH were used, so the debug
// messages are wrong when using ECDH.
const debugHandshake = false
// keyingTransport is a packet based transport that supports key
// changes. It need not be thread-safe. It should pass through
// msgNewKeys in both directions.
type keyingTransport interface {
packetConn
// prepareKeyChange sets up a key change. The key change for a
// direction will be effected if a msgNewKeys message is sent
// or received.
prepareKeyChange(*algorithms, *kexResult) error
// getSessionID returns the session ID. prepareKeyChange must
// have been called once.
getSessionID() []byte
}
// rekeyingTransport is the interface of handshakeTransport that we
// (internally) expose to ClientConn and ServerConn.
type rekeyingTransport interface {
packetConn
// requestKeyChange asks the remote side to change keys. All
// writes are blocked until the key change succeeds, which is
// signaled by reading a msgNewKeys.
requestKeyChange() error
// getSessionID returns the session ID. This is only valid
// after the first key change has completed.
getSessionID() []byte
}
// handshakeTransport implements rekeying on top of a keyingTransport
// and offers a thread-safe writePacket() interface.
type handshakeTransport struct {
conn keyingTransport
config *Config
serverVersion []byte
clientVersion []byte
// hostKeys is non-empty if we are the server. In that case,
// it contains all host keys that can be used to sign the
// connection.
hostKeys []Signer
// hostKeyAlgorithms is non-empty if we are the client. In that case,
// we accept these key types from the server as host key.
hostKeyAlgorithms []string
// On read error, incoming is closed, and readError is set.
incoming chan []byte
readError error
// data for host key checking
hostKeyCallback func(hostname string, remote net.Addr, key PublicKey) error
dialAddress string
remoteAddr net.Addr
readSinceKex uint64
// Protects the writing side of the connection
mu sync.Mutex
cond *sync.Cond
sentInitPacket []byte
sentInitMsg *kexInitMsg
writtenSinceKex uint64
writeError error
}
func newHandshakeTransport(conn keyingTransport, config *Config, clientVersion, serverVersion []byte) *handshakeTransport {
t := &handshakeTransport{
conn: conn,
serverVersion: serverVersion,
clientVersion: clientVersion,
incoming: make(chan []byte, 16),
config: config,
}
t.cond = sync.NewCond(&t.mu)
return t
}
func newClientTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ClientConfig, dialAddr string, addr net.Addr) *handshakeTransport {
t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)
t.dialAddress = dialAddr
t.remoteAddr = addr
t.hostKeyCallback = config.HostKeyCallback
if config.HostKeyAlgorithms != nil {
t.hostKeyAlgorithms = config.HostKeyAlgorithms
} else {
t.hostKeyAlgorithms = supportedHostKeyAlgos
}
go t.readLoop()
return t
}
func newServerTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ServerConfig) *handshakeTransport {
t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)
t.hostKeys = config.hostKeys
go t.readLoop()
return t
}
func (t *handshakeTransport) getSessionID() []byte {
return t.conn.getSessionID()
}
func (t *handshakeTransport) id() string {
if len(t.hostKeys) > 0 {
return "server"
}
return "client"
}
func (t *handshakeTransport) readPacket() ([]byte, error) {
p, ok := <-t.incoming
if !ok {
return nil, t.readError
}
return p, nil
}
func (t *handshakeTransport) readLoop() {
for {
p, err := t.readOnePacket()
if err != nil {
t.readError = err
close(t.incoming)
break
}
if p[0] == msgIgnore || p[0] == msgDebug {
continue
}
t.incoming <- p
}
// If we can't read, declare the writing part dead too.
t.mu.Lock()
defer t.mu.Unlock()
if t.writeError == nil {
t.writeError = t.readError
}
t.cond.Broadcast()
}
func (t *handshakeTransport) readOnePacket() ([]byte, error) {
if t.readSinceKex > t.config.RekeyThreshold {
if err := t.requestKeyChange(); err != nil {
return nil, err
}
}
p, err := t.conn.readPacket()
if err != nil {
return nil, err
}
t.readSinceKex += uint64(len(p))
if debugHandshake {
msg, err := decode(p)
log.Printf("%s got %T %v (%v)", t.id(), msg, msg, err)
}
if p[0] != msgKexInit {
return p, nil
}
err = t.enterKeyExchange(p)
t.mu.Lock()
if err != nil {
// drop connection
t.conn.Close()
t.writeError = err
}
if debugHandshake {
log.Printf("%s exited key exchange, err %v", t.id(), err)
}
// Unblock writers.
t.sentInitMsg = nil
t.sentInitPacket = nil
t.cond.Broadcast()
t.writtenSinceKex = 0
t.mu.Unlock()
if err != nil {
return nil, err
}
t.readSinceKex = 0
return []byte{msgNewKeys}, nil
}
// sendKexInit sends a key change message, and returns the message
// that was sent. After initiating the key change, all writes will be
// blocked until the change is done, and a failed key change will
// close the underlying transport. This function is safe for
// concurrent use by multiple goroutines.
func (t *handshakeTransport) sendKexInit() (*kexInitMsg, []byte, error) {
t.mu.Lock()
defer t.mu.Unlock()
return t.sendKexInitLocked()
}
func (t *handshakeTransport) requestKeyChange() error {
_, _, err := t.sendKexInit()
return err
}
// sendKexInitLocked sends a key change message. t.mu must be locked
// while this happens.
func (t *handshakeTransport) sendKexInitLocked() (*kexInitMsg, []byte, error) {
// kexInits may be sent either in response to the other side,
// or because our side wants to initiate a key change, so we
// may have already sent a kexInit. In that case, don't send a
// second kexInit.
if t.sentInitMsg != nil {
return t.sentInitMsg, t.sentInitPacket, nil
}
msg := &kexInitMsg{
KexAlgos: t.config.KeyExchanges,
CiphersClientServer: t.config.Ciphers,
CiphersServerClient: t.config.Ciphers,
MACsClientServer: t.config.MACs,
MACsServerClient: t.config.MACs,
CompressionClientServer: supportedCompressions,
CompressionServerClient: supportedCompressions,
}
io.ReadFull(rand.Reader, msg.Cookie[:])
if len(t.hostKeys) > 0 {
for _, k := range t.hostKeys {
msg.ServerHostKeyAlgos = append(
msg.ServerHostKeyAlgos, k.PublicKey().Type())
}
} else {
msg.ServerHostKeyAlgos = t.hostKeyAlgorithms
}
packet := Marshal(msg)
// writePacket destroys the contents, so save a copy.
packetCopy := make([]byte, len(packet))
copy(packetCopy, packet)
if err := t.conn.writePacket(packetCopy); err != nil {
return nil, nil, err
}
t.sentInitMsg = msg
t.sentInitPacket = packet
return msg, packet, nil
}
func (t *handshakeTransport) writePacket(p []byte) error {
t.mu.Lock()
defer t.mu.Unlock()
if t.writtenSinceKex > t.config.RekeyThreshold {
t.sendKexInitLocked()
}
for t.sentInitMsg != nil && t.writeError == nil {
t.cond.Wait()
}
if t.writeError != nil {
return t.writeError
}
t.writtenSinceKex += uint64(len(p))
switch p[0] {
case msgKexInit:
return errors.New("ssh: only handshakeTransport can send kexInit")
case msgNewKeys:
return errors.New("ssh: only handshakeTransport can send newKeys")
default:
return t.conn.writePacket(p)
}
}
func (t *handshakeTransport) Close() error {
return t.conn.Close()
}
// enterKeyExchange runs the key exchange.
func (t *handshakeTransport) enterKeyExchange(otherInitPacket []byte) error {
if debugHandshake {
log.Printf("%s entered key exchange", t.id())
}
myInit, myInitPacket, err := t.sendKexInit()
if err != nil {
return err
}
otherInit := &kexInitMsg{}
if err := Unmarshal(otherInitPacket, otherInit); err != nil {
return err
}
magics := handshakeMagics{
clientVersion: t.clientVersion,
serverVersion: t.serverVersion,
clientKexInit: otherInitPacket,
serverKexInit: myInitPacket,
}
clientInit := otherInit
serverInit := myInit
if len(t.hostKeys) == 0 {
clientInit = myInit
serverInit = otherInit
magics.clientKexInit = myInitPacket
magics.serverKexInit = otherInitPacket
}
algs, err := findAgreedAlgorithms(clientInit, serverInit)
if err != nil {
return err
}
// We don't send FirstKexFollows, but we handle receiving it.
if otherInit.FirstKexFollows && algs.kex != otherInit.KexAlgos[0] {
// other side sent a kex message for the wrong algorithm,
// which we have to ignore.
if _, err := t.conn.readPacket(); err != nil {
return err
}
}
kex, ok := kexAlgoMap[algs.kex]
if !ok {
return fmt.Errorf("ssh: unexpected key exchange algorithm %v", algs.kex)
}
var result *kexResult
if len(t.hostKeys) > 0 {
result, err = t.server(kex, algs, &magics)
} else {
result, err = t.client(kex, algs, &magics)
}
if err != nil {
return err
}
t.conn.prepareKeyChange(algs, result)
if err = t.conn.writePacket([]byte{msgNewKeys}); err != nil {
return err
}
if packet, err := t.conn.readPacket(); err != nil {
return err
} else if packet[0] != msgNewKeys {
return unexpectedMessageError(msgNewKeys, packet[0])
}
return nil
}
func (t *handshakeTransport) server(kex kexAlgorithm, algs *algorithms, magics *handshakeMagics) (*kexResult, error) {
var hostKey Signer
for _, k := range t.hostKeys {
if algs.hostKey == k.PublicKey().Type() {
hostKey = k
}
}
r, err := kex.Server(t.conn, t.config.Rand, magics, hostKey)
return r, err
}
func (t *handshakeTransport) client(kex kexAlgorithm, algs *algorithms, magics *handshakeMagics) (*kexResult, error) {
result, err := kex.Client(t.conn, t.config.Rand, magics)
if err != nil {
return nil, err
}
hostKey, err := ParsePublicKey(result.HostKey)
if err != nil {
return nil, err
}
if err := verifyHostKeySignature(hostKey, result); err != nil {
return nil, err
}
if t.hostKeyCallback != nil {
err = t.hostKeyCallback(t.dialAddress, t.remoteAddr, hostKey)
if err != nil {
return nil, err
}
}
return result, nil
}