1
1
mirror of https://github.com/go-gitea/gitea synced 2024-12-25 10:04:27 +00:00
gitea/vendor/github.com/mailru/easyjson/jlexer/lexer.go
Antoine GIRARD 9fe4437bda Use vendored go-swagger (#8087)
* Use vendored go-swagger

* vendor go-swagger

* revert un wanteed change

* remove un-needed GO111MODULE

* Update Makefile

Co-Authored-By: techknowlogick <matti@mdranta.net>
2019-09-04 22:53:54 +03:00

1183 lines
23 KiB
Go

// Package jlexer contains a JSON lexer implementation.
//
// It is expected that it is mostly used with generated parser code, so the interface is tuned
// for a parser that knows what kind of data is expected.
package jlexer
import (
"encoding/base64"
"encoding/json"
"errors"
"fmt"
"io"
"strconv"
"unicode"
"unicode/utf16"
"unicode/utf8"
)
// tokenKind determines type of a token.
type tokenKind byte
const (
tokenUndef tokenKind = iota // No token.
tokenDelim // Delimiter: one of '{', '}', '[' or ']'.
tokenString // A string literal, e.g. "abc\u1234"
tokenNumber // Number literal, e.g. 1.5e5
tokenBool // Boolean literal: true or false.
tokenNull // null keyword.
)
// token describes a single token: type, position in the input and value.
type token struct {
kind tokenKind // Type of a token.
boolValue bool // Value if a boolean literal token.
byteValue []byte // Raw value of a token.
delimValue byte
}
// Lexer is a JSON lexer: it iterates over JSON tokens in a byte slice.
type Lexer struct {
Data []byte // Input data given to the lexer.
start int // Start of the current token.
pos int // Current unscanned position in the input stream.
token token // Last scanned token, if token.kind != tokenUndef.
firstElement bool // Whether current element is the first in array or an object.
wantSep byte // A comma or a colon character, which need to occur before a token.
UseMultipleErrors bool // If we want to use multiple errors.
fatalError error // Fatal error occurred during lexing. It is usually a syntax error.
multipleErrors []*LexerError // Semantic errors occurred during lexing. Marshalling will be continued after finding this errors.
}
// FetchToken scans the input for the next token.
func (r *Lexer) FetchToken() {
r.token.kind = tokenUndef
r.start = r.pos
// Check if r.Data has r.pos element
// If it doesn't, it mean corrupted input data
if len(r.Data) < r.pos {
r.errParse("Unexpected end of data")
return
}
// Determine the type of a token by skipping whitespace and reading the
// first character.
for _, c := range r.Data[r.pos:] {
switch c {
case ':', ',':
if r.wantSep == c {
r.pos++
r.start++
r.wantSep = 0
} else {
r.errSyntax()
}
case ' ', '\t', '\r', '\n':
r.pos++
r.start++
case '"':
if r.wantSep != 0 {
r.errSyntax()
}
r.token.kind = tokenString
r.fetchString()
return
case '{', '[':
if r.wantSep != 0 {
r.errSyntax()
}
r.firstElement = true
r.token.kind = tokenDelim
r.token.delimValue = r.Data[r.pos]
r.pos++
return
case '}', ']':
if !r.firstElement && (r.wantSep != ',') {
r.errSyntax()
}
r.wantSep = 0
r.token.kind = tokenDelim
r.token.delimValue = r.Data[r.pos]
r.pos++
return
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '-':
if r.wantSep != 0 {
r.errSyntax()
}
r.token.kind = tokenNumber
r.fetchNumber()
return
case 'n':
if r.wantSep != 0 {
r.errSyntax()
}
r.token.kind = tokenNull
r.fetchNull()
return
case 't':
if r.wantSep != 0 {
r.errSyntax()
}
r.token.kind = tokenBool
r.token.boolValue = true
r.fetchTrue()
return
case 'f':
if r.wantSep != 0 {
r.errSyntax()
}
r.token.kind = tokenBool
r.token.boolValue = false
r.fetchFalse()
return
default:
r.errSyntax()
return
}
}
r.fatalError = io.EOF
return
}
// isTokenEnd returns true if the char can follow a non-delimiter token
func isTokenEnd(c byte) bool {
return c == ' ' || c == '\t' || c == '\r' || c == '\n' || c == '[' || c == ']' || c == '{' || c == '}' || c == ',' || c == ':'
}
// fetchNull fetches and checks remaining bytes of null keyword.
func (r *Lexer) fetchNull() {
r.pos += 4
if r.pos > len(r.Data) ||
r.Data[r.pos-3] != 'u' ||
r.Data[r.pos-2] != 'l' ||
r.Data[r.pos-1] != 'l' ||
(r.pos != len(r.Data) && !isTokenEnd(r.Data[r.pos])) {
r.pos -= 4
r.errSyntax()
}
}
// fetchTrue fetches and checks remaining bytes of true keyword.
func (r *Lexer) fetchTrue() {
r.pos += 4
if r.pos > len(r.Data) ||
r.Data[r.pos-3] != 'r' ||
r.Data[r.pos-2] != 'u' ||
r.Data[r.pos-1] != 'e' ||
(r.pos != len(r.Data) && !isTokenEnd(r.Data[r.pos])) {
r.pos -= 4
r.errSyntax()
}
}
// fetchFalse fetches and checks remaining bytes of false keyword.
func (r *Lexer) fetchFalse() {
r.pos += 5
if r.pos > len(r.Data) ||
r.Data[r.pos-4] != 'a' ||
r.Data[r.pos-3] != 'l' ||
r.Data[r.pos-2] != 's' ||
r.Data[r.pos-1] != 'e' ||
(r.pos != len(r.Data) && !isTokenEnd(r.Data[r.pos])) {
r.pos -= 5
r.errSyntax()
}
}
// fetchNumber scans a number literal token.
func (r *Lexer) fetchNumber() {
hasE := false
afterE := false
hasDot := false
r.pos++
for i, c := range r.Data[r.pos:] {
switch {
case c >= '0' && c <= '9':
afterE = false
case c == '.' && !hasDot:
hasDot = true
case (c == 'e' || c == 'E') && !hasE:
hasE = true
hasDot = true
afterE = true
case (c == '+' || c == '-') && afterE:
afterE = false
default:
r.pos += i
if !isTokenEnd(c) {
r.errSyntax()
} else {
r.token.byteValue = r.Data[r.start:r.pos]
}
return
}
}
r.pos = len(r.Data)
r.token.byteValue = r.Data[r.start:]
}
// findStringLen tries to scan into the string literal for ending quote char to determine required size.
// The size will be exact if no escapes are present and may be inexact if there are escaped chars.
func findStringLen(data []byte) (isValid, hasEscapes bool, length int) {
delta := 0
for i := 0; i < len(data); i++ {
switch data[i] {
case '\\':
i++
delta++
if i < len(data) && data[i] == 'u' {
delta++
}
case '"':
return true, (delta > 0), (i - delta)
}
}
return false, false, len(data)
}
// getu4 decodes \uXXXX from the beginning of s, returning the hex value,
// or it returns -1.
func getu4(s []byte) rune {
if len(s) < 6 || s[0] != '\\' || s[1] != 'u' {
return -1
}
var val rune
for i := 2; i < len(s) && i < 6; i++ {
var v byte
c := s[i]
switch c {
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
v = c - '0'
case 'a', 'b', 'c', 'd', 'e', 'f':
v = c - 'a' + 10
case 'A', 'B', 'C', 'D', 'E', 'F':
v = c - 'A' + 10
default:
return -1
}
val <<= 4
val |= rune(v)
}
return val
}
// processEscape processes a single escape sequence and returns number of bytes processed.
func (r *Lexer) processEscape(data []byte) (int, error) {
if len(data) < 2 {
return 0, fmt.Errorf("syntax error at %v", string(data))
}
c := data[1]
switch c {
case '"', '/', '\\':
r.token.byteValue = append(r.token.byteValue, c)
return 2, nil
case 'b':
r.token.byteValue = append(r.token.byteValue, '\b')
return 2, nil
case 'f':
r.token.byteValue = append(r.token.byteValue, '\f')
return 2, nil
case 'n':
r.token.byteValue = append(r.token.byteValue, '\n')
return 2, nil
case 'r':
r.token.byteValue = append(r.token.byteValue, '\r')
return 2, nil
case 't':
r.token.byteValue = append(r.token.byteValue, '\t')
return 2, nil
case 'u':
rr := getu4(data)
if rr < 0 {
return 0, errors.New("syntax error")
}
read := 6
if utf16.IsSurrogate(rr) {
rr1 := getu4(data[read:])
if dec := utf16.DecodeRune(rr, rr1); dec != unicode.ReplacementChar {
read += 6
rr = dec
} else {
rr = unicode.ReplacementChar
}
}
var d [4]byte
s := utf8.EncodeRune(d[:], rr)
r.token.byteValue = append(r.token.byteValue, d[:s]...)
return read, nil
}
return 0, errors.New("syntax error")
}
// fetchString scans a string literal token.
func (r *Lexer) fetchString() {
r.pos++
data := r.Data[r.pos:]
isValid, hasEscapes, length := findStringLen(data)
if !isValid {
r.pos += length
r.errParse("unterminated string literal")
return
}
if !hasEscapes {
r.token.byteValue = data[:length]
r.pos += length + 1
return
}
r.token.byteValue = make([]byte, 0, length)
p := 0
for i := 0; i < len(data); {
switch data[i] {
case '"':
r.pos += i + 1
r.token.byteValue = append(r.token.byteValue, data[p:i]...)
i++
return
case '\\':
r.token.byteValue = append(r.token.byteValue, data[p:i]...)
off, err := r.processEscape(data[i:])
if err != nil {
r.errParse(err.Error())
return
}
i += off
p = i
default:
i++
}
}
r.errParse("unterminated string literal")
}
// scanToken scans the next token if no token is currently available in the lexer.
func (r *Lexer) scanToken() {
if r.token.kind != tokenUndef || r.fatalError != nil {
return
}
r.FetchToken()
}
// consume resets the current token to allow scanning the next one.
func (r *Lexer) consume() {
r.token.kind = tokenUndef
r.token.delimValue = 0
}
// Ok returns true if no error (including io.EOF) was encountered during scanning.
func (r *Lexer) Ok() bool {
return r.fatalError == nil
}
const maxErrorContextLen = 13
func (r *Lexer) errParse(what string) {
if r.fatalError == nil {
var str string
if len(r.Data)-r.pos <= maxErrorContextLen {
str = string(r.Data)
} else {
str = string(r.Data[r.pos:r.pos+maxErrorContextLen-3]) + "..."
}
r.fatalError = &LexerError{
Reason: what,
Offset: r.pos,
Data: str,
}
}
}
func (r *Lexer) errSyntax() {
r.errParse("syntax error")
}
func (r *Lexer) errInvalidToken(expected string) {
if r.fatalError != nil {
return
}
if r.UseMultipleErrors {
r.pos = r.start
r.consume()
r.SkipRecursive()
switch expected {
case "[":
r.token.delimValue = ']'
r.token.kind = tokenDelim
case "{":
r.token.delimValue = '}'
r.token.kind = tokenDelim
}
r.addNonfatalError(&LexerError{
Reason: fmt.Sprintf("expected %s", expected),
Offset: r.start,
Data: string(r.Data[r.start:r.pos]),
})
return
}
var str string
if len(r.token.byteValue) <= maxErrorContextLen {
str = string(r.token.byteValue)
} else {
str = string(r.token.byteValue[:maxErrorContextLen-3]) + "..."
}
r.fatalError = &LexerError{
Reason: fmt.Sprintf("expected %s", expected),
Offset: r.pos,
Data: str,
}
}
func (r *Lexer) GetPos() int {
return r.pos
}
// Delim consumes a token and verifies that it is the given delimiter.
func (r *Lexer) Delim(c byte) {
if r.token.kind == tokenUndef && r.Ok() {
r.FetchToken()
}
if !r.Ok() || r.token.delimValue != c {
r.consume() // errInvalidToken can change token if UseMultipleErrors is enabled.
r.errInvalidToken(string([]byte{c}))
} else {
r.consume()
}
}
// IsDelim returns true if there was no scanning error and next token is the given delimiter.
func (r *Lexer) IsDelim(c byte) bool {
if r.token.kind == tokenUndef && r.Ok() {
r.FetchToken()
}
return !r.Ok() || r.token.delimValue == c
}
// Null verifies that the next token is null and consumes it.
func (r *Lexer) Null() {
if r.token.kind == tokenUndef && r.Ok() {
r.FetchToken()
}
if !r.Ok() || r.token.kind != tokenNull {
r.errInvalidToken("null")
}
r.consume()
}
// IsNull returns true if the next token is a null keyword.
func (r *Lexer) IsNull() bool {
if r.token.kind == tokenUndef && r.Ok() {
r.FetchToken()
}
return r.Ok() && r.token.kind == tokenNull
}
// Skip skips a single token.
func (r *Lexer) Skip() {
if r.token.kind == tokenUndef && r.Ok() {
r.FetchToken()
}
r.consume()
}
// SkipRecursive skips next array or object completely, or just skips a single token if not
// an array/object.
//
// Note: no syntax validation is performed on the skipped data.
func (r *Lexer) SkipRecursive() {
r.scanToken()
var start, end byte
switch r.token.delimValue {
case '{':
start, end = '{', '}'
case '[':
start, end = '[', ']'
default:
r.consume()
return
}
r.consume()
level := 1
inQuotes := false
wasEscape := false
for i, c := range r.Data[r.pos:] {
switch {
case c == start && !inQuotes:
level++
case c == end && !inQuotes:
level--
if level == 0 {
r.pos += i + 1
return
}
case c == '\\' && inQuotes:
wasEscape = !wasEscape
continue
case c == '"' && inQuotes:
inQuotes = wasEscape
case c == '"':
inQuotes = true
}
wasEscape = false
}
r.pos = len(r.Data)
r.fatalError = &LexerError{
Reason: "EOF reached while skipping array/object or token",
Offset: r.pos,
Data: string(r.Data[r.pos:]),
}
}
// Raw fetches the next item recursively as a data slice
func (r *Lexer) Raw() []byte {
r.SkipRecursive()
if !r.Ok() {
return nil
}
return r.Data[r.start:r.pos]
}
// IsStart returns whether the lexer is positioned at the start
// of an input string.
func (r *Lexer) IsStart() bool {
return r.pos == 0
}
// Consumed reads all remaining bytes from the input, publishing an error if
// there is anything but whitespace remaining.
func (r *Lexer) Consumed() {
if r.pos > len(r.Data) || !r.Ok() {
return
}
for _, c := range r.Data[r.pos:] {
if c != ' ' && c != '\t' && c != '\r' && c != '\n' {
r.AddError(&LexerError{
Reason: "invalid character '" + string(c) + "' after top-level value",
Offset: r.pos,
Data: string(r.Data[r.pos:]),
})
return
}
r.pos++
r.start++
}
}
func (r *Lexer) unsafeString() (string, []byte) {
if r.token.kind == tokenUndef && r.Ok() {
r.FetchToken()
}
if !r.Ok() || r.token.kind != tokenString {
r.errInvalidToken("string")
return "", nil
}
bytes := r.token.byteValue
ret := bytesToStr(r.token.byteValue)
r.consume()
return ret, bytes
}
// UnsafeString returns the string value if the token is a string literal.
//
// Warning: returned string may point to the input buffer, so the string should not outlive
// the input buffer. Intended pattern of usage is as an argument to a switch statement.
func (r *Lexer) UnsafeString() string {
ret, _ := r.unsafeString()
return ret
}
// UnsafeBytes returns the byte slice if the token is a string literal.
func (r *Lexer) UnsafeBytes() []byte {
_, ret := r.unsafeString()
return ret
}
// String reads a string literal.
func (r *Lexer) String() string {
if r.token.kind == tokenUndef && r.Ok() {
r.FetchToken()
}
if !r.Ok() || r.token.kind != tokenString {
r.errInvalidToken("string")
return ""
}
ret := string(r.token.byteValue)
r.consume()
return ret
}
// Bytes reads a string literal and base64 decodes it into a byte slice.
func (r *Lexer) Bytes() []byte {
if r.token.kind == tokenUndef && r.Ok() {
r.FetchToken()
}
if !r.Ok() || r.token.kind != tokenString {
r.errInvalidToken("string")
return nil
}
ret := make([]byte, base64.StdEncoding.DecodedLen(len(r.token.byteValue)))
n, err := base64.StdEncoding.Decode(ret, r.token.byteValue)
if err != nil {
r.fatalError = &LexerError{
Reason: err.Error(),
}
return nil
}
r.consume()
return ret[:n]
}
// Bool reads a true or false boolean keyword.
func (r *Lexer) Bool() bool {
if r.token.kind == tokenUndef && r.Ok() {
r.FetchToken()
}
if !r.Ok() || r.token.kind != tokenBool {
r.errInvalidToken("bool")
return false
}
ret := r.token.boolValue
r.consume()
return ret
}
func (r *Lexer) number() string {
if r.token.kind == tokenUndef && r.Ok() {
r.FetchToken()
}
if !r.Ok() || r.token.kind != tokenNumber {
r.errInvalidToken("number")
return ""
}
ret := bytesToStr(r.token.byteValue)
r.consume()
return ret
}
func (r *Lexer) Uint8() uint8 {
s := r.number()
if !r.Ok() {
return 0
}
n, err := strconv.ParseUint(s, 10, 8)
if err != nil {
r.addNonfatalError(&LexerError{
Offset: r.start,
Reason: err.Error(),
Data: s,
})
}
return uint8(n)
}
func (r *Lexer) Uint16() uint16 {
s := r.number()
if !r.Ok() {
return 0
}
n, err := strconv.ParseUint(s, 10, 16)
if err != nil {
r.addNonfatalError(&LexerError{
Offset: r.start,
Reason: err.Error(),
Data: s,
})
}
return uint16(n)
}
func (r *Lexer) Uint32() uint32 {
s := r.number()
if !r.Ok() {
return 0
}
n, err := strconv.ParseUint(s, 10, 32)
if err != nil {
r.addNonfatalError(&LexerError{
Offset: r.start,
Reason: err.Error(),
Data: s,
})
}
return uint32(n)
}
func (r *Lexer) Uint64() uint64 {
s := r.number()
if !r.Ok() {
return 0
}
n, err := strconv.ParseUint(s, 10, 64)
if err != nil {
r.addNonfatalError(&LexerError{
Offset: r.start,
Reason: err.Error(),
Data: s,
})
}
return n
}
func (r *Lexer) Uint() uint {
return uint(r.Uint64())
}
func (r *Lexer) Int8() int8 {
s := r.number()
if !r.Ok() {
return 0
}
n, err := strconv.ParseInt(s, 10, 8)
if err != nil {
r.addNonfatalError(&LexerError{
Offset: r.start,
Reason: err.Error(),
Data: s,
})
}
return int8(n)
}
func (r *Lexer) Int16() int16 {
s := r.number()
if !r.Ok() {
return 0
}
n, err := strconv.ParseInt(s, 10, 16)
if err != nil {
r.addNonfatalError(&LexerError{
Offset: r.start,
Reason: err.Error(),
Data: s,
})
}
return int16(n)
}
func (r *Lexer) Int32() int32 {
s := r.number()
if !r.Ok() {
return 0
}
n, err := strconv.ParseInt(s, 10, 32)
if err != nil {
r.addNonfatalError(&LexerError{
Offset: r.start,
Reason: err.Error(),
Data: s,
})
}
return int32(n)
}
func (r *Lexer) Int64() int64 {
s := r.number()
if !r.Ok() {
return 0
}
n, err := strconv.ParseInt(s, 10, 64)
if err != nil {
r.addNonfatalError(&LexerError{
Offset: r.start,
Reason: err.Error(),
Data: s,
})
}
return n
}
func (r *Lexer) Int() int {
return int(r.Int64())
}
func (r *Lexer) Uint8Str() uint8 {
s, b := r.unsafeString()
if !r.Ok() {
return 0
}
n, err := strconv.ParseUint(s, 10, 8)
if err != nil {
r.addNonfatalError(&LexerError{
Offset: r.start,
Reason: err.Error(),
Data: string(b),
})
}
return uint8(n)
}
func (r *Lexer) Uint16Str() uint16 {
s, b := r.unsafeString()
if !r.Ok() {
return 0
}
n, err := strconv.ParseUint(s, 10, 16)
if err != nil {
r.addNonfatalError(&LexerError{
Offset: r.start,
Reason: err.Error(),
Data: string(b),
})
}
return uint16(n)
}
func (r *Lexer) Uint32Str() uint32 {
s, b := r.unsafeString()
if !r.Ok() {
return 0
}
n, err := strconv.ParseUint(s, 10, 32)
if err != nil {
r.addNonfatalError(&LexerError{
Offset: r.start,
Reason: err.Error(),
Data: string(b),
})
}
return uint32(n)
}
func (r *Lexer) Uint64Str() uint64 {
s, b := r.unsafeString()
if !r.Ok() {
return 0
}
n, err := strconv.ParseUint(s, 10, 64)
if err != nil {
r.addNonfatalError(&LexerError{
Offset: r.start,
Reason: err.Error(),
Data: string(b),
})
}
return n
}
func (r *Lexer) UintStr() uint {
return uint(r.Uint64Str())
}
func (r *Lexer) UintptrStr() uintptr {
return uintptr(r.Uint64Str())
}
func (r *Lexer) Int8Str() int8 {
s, b := r.unsafeString()
if !r.Ok() {
return 0
}
n, err := strconv.ParseInt(s, 10, 8)
if err != nil {
r.addNonfatalError(&LexerError{
Offset: r.start,
Reason: err.Error(),
Data: string(b),
})
}
return int8(n)
}
func (r *Lexer) Int16Str() int16 {
s, b := r.unsafeString()
if !r.Ok() {
return 0
}
n, err := strconv.ParseInt(s, 10, 16)
if err != nil {
r.addNonfatalError(&LexerError{
Offset: r.start,
Reason: err.Error(),
Data: string(b),
})
}
return int16(n)
}
func (r *Lexer) Int32Str() int32 {
s, b := r.unsafeString()
if !r.Ok() {
return 0
}
n, err := strconv.ParseInt(s, 10, 32)
if err != nil {
r.addNonfatalError(&LexerError{
Offset: r.start,
Reason: err.Error(),
Data: string(b),
})
}
return int32(n)
}
func (r *Lexer) Int64Str() int64 {
s, b := r.unsafeString()
if !r.Ok() {
return 0
}
n, err := strconv.ParseInt(s, 10, 64)
if err != nil {
r.addNonfatalError(&LexerError{
Offset: r.start,
Reason: err.Error(),
Data: string(b),
})
}
return n
}
func (r *Lexer) IntStr() int {
return int(r.Int64Str())
}
func (r *Lexer) Float32() float32 {
s := r.number()
if !r.Ok() {
return 0
}
n, err := strconv.ParseFloat(s, 32)
if err != nil {
r.addNonfatalError(&LexerError{
Offset: r.start,
Reason: err.Error(),
Data: s,
})
}
return float32(n)
}
func (r *Lexer) Float32Str() float32 {
s, b := r.unsafeString()
if !r.Ok() {
return 0
}
n, err := strconv.ParseFloat(s, 32)
if err != nil {
r.addNonfatalError(&LexerError{
Offset: r.start,
Reason: err.Error(),
Data: string(b),
})
}
return float32(n)
}
func (r *Lexer) Float64() float64 {
s := r.number()
if !r.Ok() {
return 0
}
n, err := strconv.ParseFloat(s, 64)
if err != nil {
r.addNonfatalError(&LexerError{
Offset: r.start,
Reason: err.Error(),
Data: s,
})
}
return n
}
func (r *Lexer) Float64Str() float64 {
s, b := r.unsafeString()
if !r.Ok() {
return 0
}
n, err := strconv.ParseFloat(s, 64)
if err != nil {
r.addNonfatalError(&LexerError{
Offset: r.start,
Reason: err.Error(),
Data: string(b),
})
}
return n
}
func (r *Lexer) Error() error {
return r.fatalError
}
func (r *Lexer) AddError(e error) {
if r.fatalError == nil {
r.fatalError = e
}
}
func (r *Lexer) AddNonFatalError(e error) {
r.addNonfatalError(&LexerError{
Offset: r.start,
Data: string(r.Data[r.start:r.pos]),
Reason: e.Error(),
})
}
func (r *Lexer) addNonfatalError(err *LexerError) {
if r.UseMultipleErrors {
// We don't want to add errors with the same offset.
if len(r.multipleErrors) != 0 && r.multipleErrors[len(r.multipleErrors)-1].Offset == err.Offset {
return
}
r.multipleErrors = append(r.multipleErrors, err)
return
}
r.fatalError = err
}
func (r *Lexer) GetNonFatalErrors() []*LexerError {
return r.multipleErrors
}
// JsonNumber fetches and json.Number from 'encoding/json' package.
// Both int, float or string, contains them are valid values
func (r *Lexer) JsonNumber() json.Number {
if r.token.kind == tokenUndef && r.Ok() {
r.FetchToken()
}
if !r.Ok() {
r.errInvalidToken("json.Number")
return json.Number("")
}
switch r.token.kind {
case tokenString:
return json.Number(r.String())
case tokenNumber:
return json.Number(r.Raw())
case tokenNull:
r.Null()
return json.Number("")
default:
r.errSyntax()
return json.Number("")
}
}
// Interface fetches an interface{} analogous to the 'encoding/json' package.
func (r *Lexer) Interface() interface{} {
if r.token.kind == tokenUndef && r.Ok() {
r.FetchToken()
}
if !r.Ok() {
return nil
}
switch r.token.kind {
case tokenString:
return r.String()
case tokenNumber:
return r.Float64()
case tokenBool:
return r.Bool()
case tokenNull:
r.Null()
return nil
}
if r.token.delimValue == '{' {
r.consume()
ret := map[string]interface{}{}
for !r.IsDelim('}') {
key := r.String()
r.WantColon()
ret[key] = r.Interface()
r.WantComma()
}
r.Delim('}')
if r.Ok() {
return ret
} else {
return nil
}
} else if r.token.delimValue == '[' {
r.consume()
ret := []interface{}{}
for !r.IsDelim(']') {
ret = append(ret, r.Interface())
r.WantComma()
}
r.Delim(']')
if r.Ok() {
return ret
} else {
return nil
}
}
r.errSyntax()
return nil
}
// WantComma requires a comma to be present before fetching next token.
func (r *Lexer) WantComma() {
r.wantSep = ','
r.firstElement = false
}
// WantColon requires a colon to be present before fetching next token.
func (r *Lexer) WantColon() {
r.wantSep = ':'
r.firstElement = false
}