1
1
mirror of https://github.com/go-gitea/gitea synced 2025-01-11 02:04:27 +00:00
6543 ac97ea573c
[Vendor] Update go-redis to v8.5.0 (#13749)
* Update go-redis to v8.4.0

* github.com/go-redis/redis/v8  v8.4.0 -> v8.5.0

* Apply suggestions from code review

Co-authored-by: zeripath <art27@cantab.net>

* TODO

* Use the Queue termination channel as the default context for pushes

Signed-off-by: Andrew Thornton <art27@cantab.net>

* missed one

Signed-off-by: Andrew Thornton <art27@cantab.net>

Co-authored-by: zeripath <art27@cantab.net>
2021-02-10 21:28:32 +00:00

732 lines
16 KiB
Go
Vendored

package redis
import (
"context"
"crypto/tls"
"errors"
"fmt"
"net"
"strconv"
"sync"
"sync/atomic"
"time"
"github.com/cespare/xxhash/v2"
"github.com/dgryski/go-rendezvous"
"github.com/go-redis/redis/v8/internal"
"github.com/go-redis/redis/v8/internal/hashtag"
"github.com/go-redis/redis/v8/internal/pool"
"github.com/go-redis/redis/v8/internal/rand"
)
var errRingShardsDown = errors.New("redis: all ring shards are down")
//------------------------------------------------------------------------------
type ConsistentHash interface {
Get(string) string
}
type rendezvousWrapper struct {
*rendezvous.Rendezvous
}
func (w rendezvousWrapper) Get(key string) string {
return w.Lookup(key)
}
func newRendezvous(shards []string) ConsistentHash {
return rendezvousWrapper{rendezvous.New(shards, xxhash.Sum64String)}
}
//------------------------------------------------------------------------------
// RingOptions are used to configure a ring client and should be
// passed to NewRing.
type RingOptions struct {
// Map of name => host:port addresses of ring shards.
Addrs map[string]string
// NewClient creates a shard client with provided name and options.
NewClient func(name string, opt *Options) *Client
// Frequency of PING commands sent to check shards availability.
// Shard is considered down after 3 subsequent failed checks.
HeartbeatFrequency time.Duration
// NewConsistentHash returns a consistent hash that is used
// to distribute keys across the shards.
//
// See https://medium.com/@dgryski/consistent-hashing-algorithmic-tradeoffs-ef6b8e2fcae8
// for consistent hashing algorithmic tradeoffs.
NewConsistentHash func(shards []string) ConsistentHash
// Following options are copied from Options struct.
Dialer func(ctx context.Context, network, addr string) (net.Conn, error)
OnConnect func(ctx context.Context, cn *Conn) error
Username string
Password string
DB int
MaxRetries int
MinRetryBackoff time.Duration
MaxRetryBackoff time.Duration
DialTimeout time.Duration
ReadTimeout time.Duration
WriteTimeout time.Duration
PoolSize int
MinIdleConns int
MaxConnAge time.Duration
PoolTimeout time.Duration
IdleTimeout time.Duration
IdleCheckFrequency time.Duration
TLSConfig *tls.Config
Limiter Limiter
}
func (opt *RingOptions) init() {
if opt.NewClient == nil {
opt.NewClient = func(name string, opt *Options) *Client {
return NewClient(opt)
}
}
if opt.HeartbeatFrequency == 0 {
opt.HeartbeatFrequency = 500 * time.Millisecond
}
if opt.NewConsistentHash == nil {
opt.NewConsistentHash = newRendezvous
}
if opt.MaxRetries == -1 {
opt.MaxRetries = 0
} else if opt.MaxRetries == 0 {
opt.MaxRetries = 3
}
switch opt.MinRetryBackoff {
case -1:
opt.MinRetryBackoff = 0
case 0:
opt.MinRetryBackoff = 8 * time.Millisecond
}
switch opt.MaxRetryBackoff {
case -1:
opt.MaxRetryBackoff = 0
case 0:
opt.MaxRetryBackoff = 512 * time.Millisecond
}
}
func (opt *RingOptions) clientOptions() *Options {
return &Options{
Dialer: opt.Dialer,
OnConnect: opt.OnConnect,
Username: opt.Username,
Password: opt.Password,
DB: opt.DB,
MaxRetries: -1,
DialTimeout: opt.DialTimeout,
ReadTimeout: opt.ReadTimeout,
WriteTimeout: opt.WriteTimeout,
PoolSize: opt.PoolSize,
MinIdleConns: opt.MinIdleConns,
MaxConnAge: opt.MaxConnAge,
PoolTimeout: opt.PoolTimeout,
IdleTimeout: opt.IdleTimeout,
IdleCheckFrequency: opt.IdleCheckFrequency,
TLSConfig: opt.TLSConfig,
Limiter: opt.Limiter,
}
}
//------------------------------------------------------------------------------
type ringShard struct {
Client *Client
down int32
}
func newRingShard(opt *RingOptions, name, addr string) *ringShard {
clopt := opt.clientOptions()
clopt.Addr = addr
return &ringShard{
Client: opt.NewClient(name, clopt),
}
}
func (shard *ringShard) String() string {
var state string
if shard.IsUp() {
state = "up"
} else {
state = "down"
}
return fmt.Sprintf("%s is %s", shard.Client, state)
}
func (shard *ringShard) IsDown() bool {
const threshold = 3
return atomic.LoadInt32(&shard.down) >= threshold
}
func (shard *ringShard) IsUp() bool {
return !shard.IsDown()
}
// Vote votes to set shard state and returns true if state was changed.
func (shard *ringShard) Vote(up bool) bool {
if up {
changed := shard.IsDown()
atomic.StoreInt32(&shard.down, 0)
return changed
}
if shard.IsDown() {
return false
}
atomic.AddInt32(&shard.down, 1)
return shard.IsDown()
}
//------------------------------------------------------------------------------
type ringShards struct {
opt *RingOptions
mu sync.RWMutex
hash ConsistentHash
shards map[string]*ringShard // read only
list []*ringShard // read only
numShard int
closed bool
}
func newRingShards(opt *RingOptions) *ringShards {
shards := make(map[string]*ringShard, len(opt.Addrs))
list := make([]*ringShard, 0, len(shards))
for name, addr := range opt.Addrs {
shard := newRingShard(opt, name, addr)
shards[name] = shard
list = append(list, shard)
}
c := &ringShards{
opt: opt,
shards: shards,
list: list,
}
c.rebalance()
return c
}
func (c *ringShards) List() []*ringShard {
var list []*ringShard
c.mu.RLock()
if !c.closed {
list = c.list
}
c.mu.RUnlock()
return list
}
func (c *ringShards) Hash(key string) string {
key = hashtag.Key(key)
var hash string
c.mu.RLock()
if c.numShard > 0 {
hash = c.hash.Get(key)
}
c.mu.RUnlock()
return hash
}
func (c *ringShards) GetByKey(key string) (*ringShard, error) {
key = hashtag.Key(key)
c.mu.RLock()
if c.closed {
c.mu.RUnlock()
return nil, pool.ErrClosed
}
if c.numShard == 0 {
c.mu.RUnlock()
return nil, errRingShardsDown
}
hash := c.hash.Get(key)
if hash == "" {
c.mu.RUnlock()
return nil, errRingShardsDown
}
shard := c.shards[hash]
c.mu.RUnlock()
return shard, nil
}
func (c *ringShards) GetByName(shardName string) (*ringShard, error) {
if shardName == "" {
return c.Random()
}
c.mu.RLock()
shard := c.shards[shardName]
c.mu.RUnlock()
return shard, nil
}
func (c *ringShards) Random() (*ringShard, error) {
return c.GetByKey(strconv.Itoa(rand.Int()))
}
// heartbeat monitors state of each shard in the ring.
func (c *ringShards) Heartbeat(frequency time.Duration) {
ticker := time.NewTicker(frequency)
defer ticker.Stop()
ctx := context.Background()
for range ticker.C {
var rebalance bool
for _, shard := range c.List() {
err := shard.Client.Ping(ctx).Err()
isUp := err == nil || err == pool.ErrPoolTimeout
if shard.Vote(isUp) {
internal.Logger.Printf(context.Background(), "ring shard state changed: %s", shard)
rebalance = true
}
}
if rebalance {
c.rebalance()
}
}
}
// rebalance removes dead shards from the Ring.
func (c *ringShards) rebalance() {
c.mu.RLock()
shards := c.shards
c.mu.RUnlock()
liveShards := make([]string, 0, len(shards))
for name, shard := range shards {
if shard.IsUp() {
liveShards = append(liveShards, name)
}
}
hash := c.opt.NewConsistentHash(liveShards)
c.mu.Lock()
c.hash = hash
c.numShard = len(liveShards)
c.mu.Unlock()
}
func (c *ringShards) Len() int {
c.mu.RLock()
l := c.numShard
c.mu.RUnlock()
return l
}
func (c *ringShards) Close() error {
c.mu.Lock()
defer c.mu.Unlock()
if c.closed {
return nil
}
c.closed = true
var firstErr error
for _, shard := range c.shards {
if err := shard.Client.Close(); err != nil && firstErr == nil {
firstErr = err
}
}
c.hash = nil
c.shards = nil
c.list = nil
return firstErr
}
//------------------------------------------------------------------------------
type ring struct {
opt *RingOptions
shards *ringShards
cmdsInfoCache *cmdsInfoCache //nolint:structcheck
}
// Ring is a Redis client that uses consistent hashing to distribute
// keys across multiple Redis servers (shards). It's safe for
// concurrent use by multiple goroutines.
//
// Ring monitors the state of each shard and removes dead shards from
// the ring. When a shard comes online it is added back to the ring. This
// gives you maximum availability and partition tolerance, but no
// consistency between different shards or even clients. Each client
// uses shards that are available to the client and does not do any
// coordination when shard state is changed.
//
// Ring should be used when you need multiple Redis servers for caching
// and can tolerate losing data when one of the servers dies.
// Otherwise you should use Redis Cluster.
type Ring struct {
*ring
cmdable
hooks
ctx context.Context
}
func NewRing(opt *RingOptions) *Ring {
opt.init()
ring := Ring{
ring: &ring{
opt: opt,
shards: newRingShards(opt),
},
ctx: context.Background(),
}
ring.cmdsInfoCache = newCmdsInfoCache(ring.cmdsInfo)
ring.cmdable = ring.Process
go ring.shards.Heartbeat(opt.HeartbeatFrequency)
return &ring
}
func (c *Ring) Context() context.Context {
return c.ctx
}
func (c *Ring) WithContext(ctx context.Context) *Ring {
if ctx == nil {
panic("nil context")
}
clone := *c
clone.cmdable = clone.Process
clone.hooks.lock()
clone.ctx = ctx
return &clone
}
// Do creates a Cmd from the args and processes the cmd.
func (c *Ring) Do(ctx context.Context, args ...interface{}) *Cmd {
cmd := NewCmd(ctx, args...)
_ = c.Process(ctx, cmd)
return cmd
}
func (c *Ring) Process(ctx context.Context, cmd Cmder) error {
return c.hooks.process(ctx, cmd, c.process)
}
// Options returns read-only Options that were used to create the client.
func (c *Ring) Options() *RingOptions {
return c.opt
}
func (c *Ring) retryBackoff(attempt int) time.Duration {
return internal.RetryBackoff(attempt, c.opt.MinRetryBackoff, c.opt.MaxRetryBackoff)
}
// PoolStats returns accumulated connection pool stats.
func (c *Ring) PoolStats() *PoolStats {
shards := c.shards.List()
var acc PoolStats
for _, shard := range shards {
s := shard.Client.connPool.Stats()
acc.Hits += s.Hits
acc.Misses += s.Misses
acc.Timeouts += s.Timeouts
acc.TotalConns += s.TotalConns
acc.IdleConns += s.IdleConns
}
return &acc
}
// Len returns the current number of shards in the ring.
func (c *Ring) Len() int {
return c.shards.Len()
}
// Subscribe subscribes the client to the specified channels.
func (c *Ring) Subscribe(ctx context.Context, channels ...string) *PubSub {
if len(channels) == 0 {
panic("at least one channel is required")
}
shard, err := c.shards.GetByKey(channels[0])
if err != nil {
// TODO: return PubSub with sticky error
panic(err)
}
return shard.Client.Subscribe(ctx, channels...)
}
// PSubscribe subscribes the client to the given patterns.
func (c *Ring) PSubscribe(ctx context.Context, channels ...string) *PubSub {
if len(channels) == 0 {
panic("at least one channel is required")
}
shard, err := c.shards.GetByKey(channels[0])
if err != nil {
// TODO: return PubSub with sticky error
panic(err)
}
return shard.Client.PSubscribe(ctx, channels...)
}
// ForEachShard concurrently calls the fn on each live shard in the ring.
// It returns the first error if any.
func (c *Ring) ForEachShard(
ctx context.Context,
fn func(ctx context.Context, client *Client) error,
) error {
shards := c.shards.List()
var wg sync.WaitGroup
errCh := make(chan error, 1)
for _, shard := range shards {
if shard.IsDown() {
continue
}
wg.Add(1)
go func(shard *ringShard) {
defer wg.Done()
err := fn(ctx, shard.Client)
if err != nil {
select {
case errCh <- err:
default:
}
}
}(shard)
}
wg.Wait()
select {
case err := <-errCh:
return err
default:
return nil
}
}
func (c *Ring) cmdsInfo(ctx context.Context) (map[string]*CommandInfo, error) {
shards := c.shards.List()
var firstErr error
for _, shard := range shards {
cmdsInfo, err := shard.Client.Command(ctx).Result()
if err == nil {
return cmdsInfo, nil
}
if firstErr == nil {
firstErr = err
}
}
if firstErr == nil {
return nil, errRingShardsDown
}
return nil, firstErr
}
func (c *Ring) cmdInfo(ctx context.Context, name string) *CommandInfo {
cmdsInfo, err := c.cmdsInfoCache.Get(ctx)
if err != nil {
return nil
}
info := cmdsInfo[name]
if info == nil {
internal.Logger.Printf(c.Context(), "info for cmd=%s not found", name)
}
return info
}
func (c *Ring) cmdShard(ctx context.Context, cmd Cmder) (*ringShard, error) {
cmdInfo := c.cmdInfo(ctx, cmd.Name())
pos := cmdFirstKeyPos(cmd, cmdInfo)
if pos == 0 {
return c.shards.Random()
}
firstKey := cmd.stringArg(pos)
return c.shards.GetByKey(firstKey)
}
func (c *Ring) process(ctx context.Context, cmd Cmder) error {
var lastErr error
for attempt := 0; attempt <= c.opt.MaxRetries; attempt++ {
if attempt > 0 {
if err := internal.Sleep(ctx, c.retryBackoff(attempt)); err != nil {
return err
}
}
shard, err := c.cmdShard(ctx, cmd)
if err != nil {
return err
}
lastErr = shard.Client.Process(ctx, cmd)
if lastErr == nil || !shouldRetry(lastErr, cmd.readTimeout() == nil) {
return lastErr
}
}
return lastErr
}
func (c *Ring) Pipelined(ctx context.Context, fn func(Pipeliner) error) ([]Cmder, error) {
return c.Pipeline().Pipelined(ctx, fn)
}
func (c *Ring) Pipeline() Pipeliner {
pipe := Pipeline{
ctx: c.ctx,
exec: c.processPipeline,
}
pipe.init()
return &pipe
}
func (c *Ring) processPipeline(ctx context.Context, cmds []Cmder) error {
return c.hooks.processPipeline(ctx, cmds, func(ctx context.Context, cmds []Cmder) error {
return c.generalProcessPipeline(ctx, cmds, false)
})
}
func (c *Ring) TxPipelined(ctx context.Context, fn func(Pipeliner) error) ([]Cmder, error) {
return c.TxPipeline().Pipelined(ctx, fn)
}
func (c *Ring) TxPipeline() Pipeliner {
pipe := Pipeline{
ctx: c.ctx,
exec: c.processTxPipeline,
}
pipe.init()
return &pipe
}
func (c *Ring) processTxPipeline(ctx context.Context, cmds []Cmder) error {
return c.hooks.processPipeline(ctx, cmds, func(ctx context.Context, cmds []Cmder) error {
return c.generalProcessPipeline(ctx, cmds, true)
})
}
func (c *Ring) generalProcessPipeline(
ctx context.Context, cmds []Cmder, tx bool,
) error {
cmdsMap := make(map[string][]Cmder)
for _, cmd := range cmds {
cmdInfo := c.cmdInfo(ctx, cmd.Name())
hash := cmd.stringArg(cmdFirstKeyPos(cmd, cmdInfo))
if hash != "" {
hash = c.shards.Hash(hash)
}
cmdsMap[hash] = append(cmdsMap[hash], cmd)
}
var wg sync.WaitGroup
for hash, cmds := range cmdsMap {
wg.Add(1)
go func(hash string, cmds []Cmder) {
defer wg.Done()
_ = c.processShardPipeline(ctx, hash, cmds, tx)
}(hash, cmds)
}
wg.Wait()
return cmdsFirstErr(cmds)
}
func (c *Ring) processShardPipeline(
ctx context.Context, hash string, cmds []Cmder, tx bool,
) error {
// TODO: retry?
shard, err := c.shards.GetByName(hash)
if err != nil {
setCmdsErr(cmds, err)
return err
}
if tx {
return shard.Client.processTxPipeline(ctx, cmds)
}
return shard.Client.processPipeline(ctx, cmds)
}
func (c *Ring) Watch(ctx context.Context, fn func(*Tx) error, keys ...string) error {
if len(keys) == 0 {
return fmt.Errorf("redis: Watch requires at least one key")
}
var shards []*ringShard
for _, key := range keys {
if key != "" {
shard, err := c.shards.GetByKey(hashtag.Key(key))
if err != nil {
return err
}
shards = append(shards, shard)
}
}
if len(shards) == 0 {
return fmt.Errorf("redis: Watch requires at least one shard")
}
if len(shards) > 1 {
for _, shard := range shards[1:] {
if shard.Client != shards[0].Client {
err := fmt.Errorf("redis: Watch requires all keys to be in the same shard")
return err
}
}
}
return shards[0].Client.Watch(ctx, fn, keys...)
}
// Close closes the ring client, releasing any open resources.
//
// It is rare to Close a Ring, as the Ring is meant to be long-lived
// and shared between many goroutines.
func (c *Ring) Close() error {
return c.shards.Close()
}