1
1
mirror of https://github.com/go-gitea/gitea synced 2025-01-23 08:04:30 +00:00
Antoine GIRARD 9fe4437bda Use vendored go-swagger (#8087)
* Use vendored go-swagger

* vendor go-swagger

* revert un wanteed change

* remove un-needed GO111MODULE

* Update Makefile

Co-Authored-By: techknowlogick <matti@mdranta.net>
2019-09-04 22:53:54 +03:00

730 lines
18 KiB
Go

package hcl
import (
"errors"
"fmt"
"reflect"
"sort"
"strconv"
"strings"
"github.com/hashicorp/hcl/hcl/ast"
"github.com/hashicorp/hcl/hcl/parser"
"github.com/hashicorp/hcl/hcl/token"
)
// This is the tag to use with structures to have settings for HCL
const tagName = "hcl"
var (
// nodeType holds a reference to the type of ast.Node
nodeType reflect.Type = findNodeType()
)
// Unmarshal accepts a byte slice as input and writes the
// data to the value pointed to by v.
func Unmarshal(bs []byte, v interface{}) error {
root, err := parse(bs)
if err != nil {
return err
}
return DecodeObject(v, root)
}
// Decode reads the given input and decodes it into the structure
// given by `out`.
func Decode(out interface{}, in string) error {
obj, err := Parse(in)
if err != nil {
return err
}
return DecodeObject(out, obj)
}
// DecodeObject is a lower-level version of Decode. It decodes a
// raw Object into the given output.
func DecodeObject(out interface{}, n ast.Node) error {
val := reflect.ValueOf(out)
if val.Kind() != reflect.Ptr {
return errors.New("result must be a pointer")
}
// If we have the file, we really decode the root node
if f, ok := n.(*ast.File); ok {
n = f.Node
}
var d decoder
return d.decode("root", n, val.Elem())
}
type decoder struct {
stack []reflect.Kind
}
func (d *decoder) decode(name string, node ast.Node, result reflect.Value) error {
k := result
// If we have an interface with a valid value, we use that
// for the check.
if result.Kind() == reflect.Interface {
elem := result.Elem()
if elem.IsValid() {
k = elem
}
}
// Push current onto stack unless it is an interface.
if k.Kind() != reflect.Interface {
d.stack = append(d.stack, k.Kind())
// Schedule a pop
defer func() {
d.stack = d.stack[:len(d.stack)-1]
}()
}
switch k.Kind() {
case reflect.Bool:
return d.decodeBool(name, node, result)
case reflect.Float32, reflect.Float64:
return d.decodeFloat(name, node, result)
case reflect.Int, reflect.Int32, reflect.Int64:
return d.decodeInt(name, node, result)
case reflect.Interface:
// When we see an interface, we make our own thing
return d.decodeInterface(name, node, result)
case reflect.Map:
return d.decodeMap(name, node, result)
case reflect.Ptr:
return d.decodePtr(name, node, result)
case reflect.Slice:
return d.decodeSlice(name, node, result)
case reflect.String:
return d.decodeString(name, node, result)
case reflect.Struct:
return d.decodeStruct(name, node, result)
default:
return &parser.PosError{
Pos: node.Pos(),
Err: fmt.Errorf("%s: unknown kind to decode into: %s", name, k.Kind()),
}
}
}
func (d *decoder) decodeBool(name string, node ast.Node, result reflect.Value) error {
switch n := node.(type) {
case *ast.LiteralType:
if n.Token.Type == token.BOOL {
v, err := strconv.ParseBool(n.Token.Text)
if err != nil {
return err
}
result.Set(reflect.ValueOf(v))
return nil
}
}
return &parser.PosError{
Pos: node.Pos(),
Err: fmt.Errorf("%s: unknown type %T", name, node),
}
}
func (d *decoder) decodeFloat(name string, node ast.Node, result reflect.Value) error {
switch n := node.(type) {
case *ast.LiteralType:
if n.Token.Type == token.FLOAT || n.Token.Type == token.NUMBER {
v, err := strconv.ParseFloat(n.Token.Text, 64)
if err != nil {
return err
}
result.Set(reflect.ValueOf(v).Convert(result.Type()))
return nil
}
}
return &parser.PosError{
Pos: node.Pos(),
Err: fmt.Errorf("%s: unknown type %T", name, node),
}
}
func (d *decoder) decodeInt(name string, node ast.Node, result reflect.Value) error {
switch n := node.(type) {
case *ast.LiteralType:
switch n.Token.Type {
case token.NUMBER:
v, err := strconv.ParseInt(n.Token.Text, 0, 0)
if err != nil {
return err
}
if result.Kind() == reflect.Interface {
result.Set(reflect.ValueOf(int(v)))
} else {
result.SetInt(v)
}
return nil
case token.STRING:
v, err := strconv.ParseInt(n.Token.Value().(string), 0, 0)
if err != nil {
return err
}
if result.Kind() == reflect.Interface {
result.Set(reflect.ValueOf(int(v)))
} else {
result.SetInt(v)
}
return nil
}
}
return &parser.PosError{
Pos: node.Pos(),
Err: fmt.Errorf("%s: unknown type %T", name, node),
}
}
func (d *decoder) decodeInterface(name string, node ast.Node, result reflect.Value) error {
// When we see an ast.Node, we retain the value to enable deferred decoding.
// Very useful in situations where we want to preserve ast.Node information
// like Pos
if result.Type() == nodeType && result.CanSet() {
result.Set(reflect.ValueOf(node))
return nil
}
var set reflect.Value
redecode := true
// For testing types, ObjectType should just be treated as a list. We
// set this to a temporary var because we want to pass in the real node.
testNode := node
if ot, ok := node.(*ast.ObjectType); ok {
testNode = ot.List
}
switch n := testNode.(type) {
case *ast.ObjectList:
// If we're at the root or we're directly within a slice, then we
// decode objects into map[string]interface{}, otherwise we decode
// them into lists.
if len(d.stack) == 0 || d.stack[len(d.stack)-1] == reflect.Slice {
var temp map[string]interface{}
tempVal := reflect.ValueOf(temp)
result := reflect.MakeMap(
reflect.MapOf(
reflect.TypeOf(""),
tempVal.Type().Elem()))
set = result
} else {
var temp []map[string]interface{}
tempVal := reflect.ValueOf(temp)
result := reflect.MakeSlice(
reflect.SliceOf(tempVal.Type().Elem()), 0, len(n.Items))
set = result
}
case *ast.ObjectType:
// If we're at the root or we're directly within a slice, then we
// decode objects into map[string]interface{}, otherwise we decode
// them into lists.
if len(d.stack) == 0 || d.stack[len(d.stack)-1] == reflect.Slice {
var temp map[string]interface{}
tempVal := reflect.ValueOf(temp)
result := reflect.MakeMap(
reflect.MapOf(
reflect.TypeOf(""),
tempVal.Type().Elem()))
set = result
} else {
var temp []map[string]interface{}
tempVal := reflect.ValueOf(temp)
result := reflect.MakeSlice(
reflect.SliceOf(tempVal.Type().Elem()), 0, 1)
set = result
}
case *ast.ListType:
var temp []interface{}
tempVal := reflect.ValueOf(temp)
result := reflect.MakeSlice(
reflect.SliceOf(tempVal.Type().Elem()), 0, 0)
set = result
case *ast.LiteralType:
switch n.Token.Type {
case token.BOOL:
var result bool
set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
case token.FLOAT:
var result float64
set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
case token.NUMBER:
var result int
set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
case token.STRING, token.HEREDOC:
set = reflect.Indirect(reflect.New(reflect.TypeOf("")))
default:
return &parser.PosError{
Pos: node.Pos(),
Err: fmt.Errorf("%s: cannot decode into interface: %T", name, node),
}
}
default:
return fmt.Errorf(
"%s: cannot decode into interface: %T",
name, node)
}
// Set the result to what its supposed to be, then reset
// result so we don't reflect into this method anymore.
result.Set(set)
if redecode {
// Revisit the node so that we can use the newly instantiated
// thing and populate it.
if err := d.decode(name, node, result); err != nil {
return err
}
}
return nil
}
func (d *decoder) decodeMap(name string, node ast.Node, result reflect.Value) error {
if item, ok := node.(*ast.ObjectItem); ok {
node = &ast.ObjectList{Items: []*ast.ObjectItem{item}}
}
if ot, ok := node.(*ast.ObjectType); ok {
node = ot.List
}
n, ok := node.(*ast.ObjectList)
if !ok {
return &parser.PosError{
Pos: node.Pos(),
Err: fmt.Errorf("%s: not an object type for map (%T)", name, node),
}
}
// If we have an interface, then we can address the interface,
// but not the slice itself, so get the element but set the interface
set := result
if result.Kind() == reflect.Interface {
result = result.Elem()
}
resultType := result.Type()
resultElemType := resultType.Elem()
resultKeyType := resultType.Key()
if resultKeyType.Kind() != reflect.String {
return &parser.PosError{
Pos: node.Pos(),
Err: fmt.Errorf("%s: map must have string keys", name),
}
}
// Make a map if it is nil
resultMap := result
if result.IsNil() {
resultMap = reflect.MakeMap(
reflect.MapOf(resultKeyType, resultElemType))
}
// Go through each element and decode it.
done := make(map[string]struct{})
for _, item := range n.Items {
if item.Val == nil {
continue
}
// github.com/hashicorp/terraform/issue/5740
if len(item.Keys) == 0 {
return &parser.PosError{
Pos: node.Pos(),
Err: fmt.Errorf("%s: map must have string keys", name),
}
}
// Get the key we're dealing with, which is the first item
keyStr := item.Keys[0].Token.Value().(string)
// If we've already processed this key, then ignore it
if _, ok := done[keyStr]; ok {
continue
}
// Determine the value. If we have more than one key, then we
// get the objectlist of only these keys.
itemVal := item.Val
if len(item.Keys) > 1 {
itemVal = n.Filter(keyStr)
done[keyStr] = struct{}{}
}
// Make the field name
fieldName := fmt.Sprintf("%s.%s", name, keyStr)
// Get the key/value as reflection values
key := reflect.ValueOf(keyStr)
val := reflect.Indirect(reflect.New(resultElemType))
// If we have a pre-existing value in the map, use that
oldVal := resultMap.MapIndex(key)
if oldVal.IsValid() {
val.Set(oldVal)
}
// Decode!
if err := d.decode(fieldName, itemVal, val); err != nil {
return err
}
// Set the value on the map
resultMap.SetMapIndex(key, val)
}
// Set the final map if we can
set.Set(resultMap)
return nil
}
func (d *decoder) decodePtr(name string, node ast.Node, result reflect.Value) error {
// Create an element of the concrete (non pointer) type and decode
// into that. Then set the value of the pointer to this type.
resultType := result.Type()
resultElemType := resultType.Elem()
val := reflect.New(resultElemType)
if err := d.decode(name, node, reflect.Indirect(val)); err != nil {
return err
}
result.Set(val)
return nil
}
func (d *decoder) decodeSlice(name string, node ast.Node, result reflect.Value) error {
// If we have an interface, then we can address the interface,
// but not the slice itself, so get the element but set the interface
set := result
if result.Kind() == reflect.Interface {
result = result.Elem()
}
// Create the slice if it isn't nil
resultType := result.Type()
resultElemType := resultType.Elem()
if result.IsNil() {
resultSliceType := reflect.SliceOf(resultElemType)
result = reflect.MakeSlice(
resultSliceType, 0, 0)
}
// Figure out the items we'll be copying into the slice
var items []ast.Node
switch n := node.(type) {
case *ast.ObjectList:
items = make([]ast.Node, len(n.Items))
for i, item := range n.Items {
items[i] = item
}
case *ast.ObjectType:
items = []ast.Node{n}
case *ast.ListType:
items = n.List
default:
return &parser.PosError{
Pos: node.Pos(),
Err: fmt.Errorf("unknown slice type: %T", node),
}
}
for i, item := range items {
fieldName := fmt.Sprintf("%s[%d]", name, i)
// Decode
val := reflect.Indirect(reflect.New(resultElemType))
// if item is an object that was decoded from ambiguous JSON and
// flattened, make sure it's expanded if it needs to decode into a
// defined structure.
item := expandObject(item, val)
if err := d.decode(fieldName, item, val); err != nil {
return err
}
// Append it onto the slice
result = reflect.Append(result, val)
}
set.Set(result)
return nil
}
// expandObject detects if an ambiguous JSON object was flattened to a List which
// should be decoded into a struct, and expands the ast to properly deocode.
func expandObject(node ast.Node, result reflect.Value) ast.Node {
item, ok := node.(*ast.ObjectItem)
if !ok {
return node
}
elemType := result.Type()
// our target type must be a struct
switch elemType.Kind() {
case reflect.Ptr:
switch elemType.Elem().Kind() {
case reflect.Struct:
//OK
default:
return node
}
case reflect.Struct:
//OK
default:
return node
}
// A list value will have a key and field name. If it had more fields,
// it wouldn't have been flattened.
if len(item.Keys) != 2 {
return node
}
keyToken := item.Keys[0].Token
item.Keys = item.Keys[1:]
// we need to un-flatten the ast enough to decode
newNode := &ast.ObjectItem{
Keys: []*ast.ObjectKey{
&ast.ObjectKey{
Token: keyToken,
},
},
Val: &ast.ObjectType{
List: &ast.ObjectList{
Items: []*ast.ObjectItem{item},
},
},
}
return newNode
}
func (d *decoder) decodeString(name string, node ast.Node, result reflect.Value) error {
switch n := node.(type) {
case *ast.LiteralType:
switch n.Token.Type {
case token.NUMBER:
result.Set(reflect.ValueOf(n.Token.Text).Convert(result.Type()))
return nil
case token.STRING, token.HEREDOC:
result.Set(reflect.ValueOf(n.Token.Value()).Convert(result.Type()))
return nil
}
}
return &parser.PosError{
Pos: node.Pos(),
Err: fmt.Errorf("%s: unknown type for string %T", name, node),
}
}
func (d *decoder) decodeStruct(name string, node ast.Node, result reflect.Value) error {
var item *ast.ObjectItem
if it, ok := node.(*ast.ObjectItem); ok {
item = it
node = it.Val
}
if ot, ok := node.(*ast.ObjectType); ok {
node = ot.List
}
// Handle the special case where the object itself is a literal. Previously
// the yacc parser would always ensure top-level elements were arrays. The new
// parser does not make the same guarantees, thus we need to convert any
// top-level literal elements into a list.
if _, ok := node.(*ast.LiteralType); ok && item != nil {
node = &ast.ObjectList{Items: []*ast.ObjectItem{item}}
}
list, ok := node.(*ast.ObjectList)
if !ok {
return &parser.PosError{
Pos: node.Pos(),
Err: fmt.Errorf("%s: not an object type for struct (%T)", name, node),
}
}
// This slice will keep track of all the structs we'll be decoding.
// There can be more than one struct if there are embedded structs
// that are squashed.
structs := make([]reflect.Value, 1, 5)
structs[0] = result
// Compile the list of all the fields that we're going to be decoding
// from all the structs.
type field struct {
field reflect.StructField
val reflect.Value
}
fields := []field{}
for len(structs) > 0 {
structVal := structs[0]
structs = structs[1:]
structType := structVal.Type()
for i := 0; i < structType.NumField(); i++ {
fieldType := structType.Field(i)
tagParts := strings.Split(fieldType.Tag.Get(tagName), ",")
// Ignore fields with tag name "-"
if tagParts[0] == "-" {
continue
}
if fieldType.Anonymous {
fieldKind := fieldType.Type.Kind()
if fieldKind != reflect.Struct {
return &parser.PosError{
Pos: node.Pos(),
Err: fmt.Errorf("%s: unsupported type to struct: %s",
fieldType.Name, fieldKind),
}
}
// We have an embedded field. We "squash" the fields down
// if specified in the tag.
squash := false
for _, tag := range tagParts[1:] {
if tag == "squash" {
squash = true
break
}
}
if squash {
structs = append(
structs, result.FieldByName(fieldType.Name))
continue
}
}
// Normal struct field, store it away
fields = append(fields, field{fieldType, structVal.Field(i)})
}
}
usedKeys := make(map[string]struct{})
decodedFields := make([]string, 0, len(fields))
decodedFieldsVal := make([]reflect.Value, 0)
unusedKeysVal := make([]reflect.Value, 0)
for _, f := range fields {
field, fieldValue := f.field, f.val
if !fieldValue.IsValid() {
// This should never happen
panic("field is not valid")
}
// If we can't set the field, then it is unexported or something,
// and we just continue onwards.
if !fieldValue.CanSet() {
continue
}
fieldName := field.Name
tagValue := field.Tag.Get(tagName)
tagParts := strings.SplitN(tagValue, ",", 2)
if len(tagParts) >= 2 {
switch tagParts[1] {
case "decodedFields":
decodedFieldsVal = append(decodedFieldsVal, fieldValue)
continue
case "key":
if item == nil {
return &parser.PosError{
Pos: node.Pos(),
Err: fmt.Errorf("%s: %s asked for 'key', impossible",
name, fieldName),
}
}
fieldValue.SetString(item.Keys[0].Token.Value().(string))
continue
case "unusedKeys":
unusedKeysVal = append(unusedKeysVal, fieldValue)
continue
}
}
if tagParts[0] != "" {
fieldName = tagParts[0]
}
// Determine the element we'll use to decode. If it is a single
// match (only object with the field), then we decode it exactly.
// If it is a prefix match, then we decode the matches.
filter := list.Filter(fieldName)
prefixMatches := filter.Children()
matches := filter.Elem()
if len(matches.Items) == 0 && len(prefixMatches.Items) == 0 {
continue
}
// Track the used key
usedKeys[fieldName] = struct{}{}
// Create the field name and decode. We range over the elements
// because we actually want the value.
fieldName = fmt.Sprintf("%s.%s", name, fieldName)
if len(prefixMatches.Items) > 0 {
if err := d.decode(fieldName, prefixMatches, fieldValue); err != nil {
return err
}
}
for _, match := range matches.Items {
var decodeNode ast.Node = match.Val
if ot, ok := decodeNode.(*ast.ObjectType); ok {
decodeNode = &ast.ObjectList{Items: ot.List.Items}
}
if err := d.decode(fieldName, decodeNode, fieldValue); err != nil {
return err
}
}
decodedFields = append(decodedFields, field.Name)
}
if len(decodedFieldsVal) > 0 {
// Sort it so that it is deterministic
sort.Strings(decodedFields)
for _, v := range decodedFieldsVal {
v.Set(reflect.ValueOf(decodedFields))
}
}
return nil
}
// findNodeType returns the type of ast.Node
func findNodeType() reflect.Type {
var nodeContainer struct {
Node ast.Node
}
value := reflect.ValueOf(nodeContainer).FieldByName("Node")
return value.Type()
}