1
1
mirror of https://github.com/go-gitea/gitea synced 2024-11-13 21:54:24 +00:00
gitea/vendor/github.com/keybase/go-crypto/rsa/rsa.go
Antoine GIRARD 274149dd14 Switch to keybase go-crypto (for some elliptic curve key) + test (#1925)
* Switch to keybase go-crypto (for some elliptic curve key) + test

* Use assert.NoError 

and add a little more context to failing test description

* Use assert.(No)Error everywhere 🌈

and assert.Error in place of .Nil/.NotNil
2017-06-14 08:43:43 +08:00

647 lines
19 KiB
Go
Vendored
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package rsa implements RSA encryption as specified in PKCS#1.
//
// RSA is a single, fundamental operation that is used in this package to
// implement either public-key encryption or public-key signatures.
//
// The original specification for encryption and signatures with RSA is PKCS#1
// and the terms "RSA encryption" and "RSA signatures" by default refer to
// PKCS#1 version 1.5. However, that specification has flaws and new designs
// should use version two, usually called by just OAEP and PSS, where
// possible.
//
// Two sets of interfaces are included in this package. When a more abstract
// interface isn't neccessary, there are functions for encrypting/decrypting
// with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract
// over the public-key primitive, the PrivateKey struct implements the
// Decrypter and Signer interfaces from the crypto package.
package rsa
import (
"crypto"
"crypto/rand"
"crypto/subtle"
"errors"
"hash"
"io"
"math/big"
)
var bigZero = big.NewInt(0)
var bigOne = big.NewInt(1)
// A PublicKey represents the public part of an RSA key.
type PublicKey struct {
N *big.Int // modulus
E int64 // public exponent
}
// OAEPOptions is an interface for passing options to OAEP decryption using the
// crypto.Decrypter interface.
type OAEPOptions struct {
// Hash is the hash function that will be used when generating the mask.
Hash crypto.Hash
// Label is an arbitrary byte string that must be equal to the value
// used when encrypting.
Label []byte
}
var (
errPublicModulus = errors.New("crypto/rsa: missing public modulus")
errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")
errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large")
)
// checkPub sanity checks the public key before we use it.
// We require pub.E to fit into a 32-bit integer so that we
// do not have different behavior depending on whether
// int is 32 or 64 bits. See also
// http://www.imperialviolet.org/2012/03/16/rsae.html.
func checkPub(pub *PublicKey) error {
if pub.N == nil {
return errPublicModulus
}
if pub.E < 2 {
return errPublicExponentSmall
}
if pub.E > 1<<63-1 {
return errPublicExponentLarge
}
return nil
}
// A PrivateKey represents an RSA key
type PrivateKey struct {
PublicKey // public part.
D *big.Int // private exponent
Primes []*big.Int // prime factors of N, has >= 2 elements.
// Precomputed contains precomputed values that speed up private
// operations, if available.
Precomputed PrecomputedValues
}
// Public returns the public key corresponding to priv.
func (priv *PrivateKey) Public() crypto.PublicKey {
return &priv.PublicKey
}
// Sign signs msg with priv, reading randomness from rand. If opts is a
// *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will
// be used. This method is intended to support keys where the private part is
// kept in, for example, a hardware module. Common uses should use the Sign*
// functions in this package.
func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) {
if pssOpts, ok := opts.(*PSSOptions); ok {
return SignPSS(rand, priv, pssOpts.Hash, msg, pssOpts)
}
return SignPKCS1v15(rand, priv, opts.HashFunc(), msg)
}
// Decrypt decrypts ciphertext with priv. If opts is nil or of type
// *PKCS1v15DecryptOptions then PKCS#1 v1.5 decryption is performed. Otherwise
// opts must have type *OAEPOptions and OAEP decryption is done.
func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) {
if opts == nil {
return DecryptPKCS1v15(rand, priv, ciphertext)
}
switch opts := opts.(type) {
case *OAEPOptions:
return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label)
case *PKCS1v15DecryptOptions:
if l := opts.SessionKeyLen; l > 0 {
plaintext = make([]byte, l)
if _, err := io.ReadFull(rand, plaintext); err != nil {
return nil, err
}
if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil {
return nil, err
}
return plaintext, nil
} else {
return DecryptPKCS1v15(rand, priv, ciphertext)
}
default:
return nil, errors.New("crypto/rsa: invalid options for Decrypt")
}
}
type PrecomputedValues struct {
Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
Qinv *big.Int // Q^-1 mod P
// CRTValues is used for the 3rd and subsequent primes. Due to a
// historical accident, the CRT for the first two primes is handled
// differently in PKCS#1 and interoperability is sufficiently
// important that we mirror this.
CRTValues []CRTValue
}
// CRTValue contains the precomputed Chinese remainder theorem values.
type CRTValue struct {
Exp *big.Int // D mod (prime-1).
Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
R *big.Int // product of primes prior to this (inc p and q).
}
// Validate performs basic sanity checks on the key.
// It returns nil if the key is valid, or else an error describing a problem.
func (priv *PrivateKey) Validate() error {
if err := checkPub(&priv.PublicKey); err != nil {
return err
}
// Check that Πprimes == n.
modulus := new(big.Int).Set(bigOne)
for _, prime := range priv.Primes {
// Any primes ≤ 1 will cause divide-by-zero panics later.
if prime.Cmp(bigOne) <= 0 {
return errors.New("crypto/rsa: invalid prime value")
}
modulus.Mul(modulus, prime)
}
if modulus.Cmp(priv.N) != 0 {
return errors.New("crypto/rsa: invalid modulus")
}
// Check that de ≡ 1 mod p-1, for each prime.
// This implies that e is coprime to each p-1 as e has a multiplicative
// inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
// exponent(/n). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
// mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
congruence := new(big.Int)
de := new(big.Int).SetInt64(int64(priv.E))
de.Mul(de, priv.D)
for _, prime := range priv.Primes {
pminus1 := new(big.Int).Sub(prime, bigOne)
congruence.Mod(de, pminus1)
if congruence.Cmp(bigOne) != 0 {
return errors.New("crypto/rsa: invalid exponents")
}
}
return nil
}
// GenerateKey generates an RSA keypair of the given bit size using the
// random source random (for example, crypto/rand.Reader).
func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err error) {
return GenerateMultiPrimeKey(random, 2, bits)
}
// GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
// size and the given random source, as suggested in [1]. Although the public
// keys are compatible (actually, indistinguishable) from the 2-prime case,
// the private keys are not. Thus it may not be possible to export multi-prime
// private keys in certain formats or to subsequently import them into other
// code.
//
// Table 1 in [2] suggests maximum numbers of primes for a given size.
//
// [1] US patent 4405829 (1972, expired)
// [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err error) {
priv = new(PrivateKey)
priv.E = 65537
if nprimes < 2 {
return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
}
primes := make([]*big.Int, nprimes)
NextSetOfPrimes:
for {
todo := bits
// crypto/rand should set the top two bits in each prime.
// Thus each prime has the form
// p_i = 2^bitlen(p_i) × 0.11... (in base 2).
// And the product is:
// P = 2^todo × α
// where α is the product of nprimes numbers of the form 0.11...
//
// If α < 1/2 (which can happen for nprimes > 2), we need to
// shift todo to compensate for lost bits: the mean value of 0.11...
// is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
// will give good results.
if nprimes >= 7 {
todo += (nprimes - 2) / 5
}
for i := 0; i < nprimes; i++ {
primes[i], err = rand.Prime(random, todo/(nprimes-i))
if err != nil {
return nil, err
}
todo -= primes[i].BitLen()
}
// Make sure that primes is pairwise unequal.
for i, prime := range primes {
for j := 0; j < i; j++ {
if prime.Cmp(primes[j]) == 0 {
continue NextSetOfPrimes
}
}
}
n := new(big.Int).Set(bigOne)
totient := new(big.Int).Set(bigOne)
pminus1 := new(big.Int)
for _, prime := range primes {
n.Mul(n, prime)
pminus1.Sub(prime, bigOne)
totient.Mul(totient, pminus1)
}
if n.BitLen() != bits {
// This should never happen for nprimes == 2 because
// crypto/rand should set the top two bits in each prime.
// For nprimes > 2 we hope it does not happen often.
continue NextSetOfPrimes
}
g := new(big.Int)
priv.D = new(big.Int)
y := new(big.Int)
e := big.NewInt(int64(priv.E))
g.GCD(priv.D, y, e, totient)
if g.Cmp(bigOne) == 0 {
if priv.D.Sign() < 0 {
priv.D.Add(priv.D, totient)
}
priv.Primes = primes
priv.N = n
break
}
}
priv.Precompute()
return
}
// incCounter increments a four byte, big-endian counter.
func incCounter(c *[4]byte) {
if c[3]++; c[3] != 0 {
return
}
if c[2]++; c[2] != 0 {
return
}
if c[1]++; c[1] != 0 {
return
}
c[0]++
}
// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
// specified in PKCS#1 v2.1.
func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
var counter [4]byte
var digest []byte
done := 0
for done < len(out) {
hash.Write(seed)
hash.Write(counter[0:4])
digest = hash.Sum(digest[:0])
hash.Reset()
for i := 0; i < len(digest) && done < len(out); i++ {
out[done] ^= digest[i]
done++
}
incCounter(&counter)
}
}
// ErrMessageTooLong is returned when attempting to encrypt a message which is
// too large for the size of the public key.
var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
e := big.NewInt(int64(pub.E))
c.Exp(m, e, pub.N)
return c
}
// EncryptOAEP encrypts the given message with RSA-OAEP.
//
// OAEP is parameterised by a hash function that is used as a random oracle.
// Encryption and decryption of a given message must use the same hash function
// and sha256.New() is a reasonable choice.
//
// The random parameter is used as a source of entropy to ensure that
// encrypting the same message twice doesn't result in the same ciphertext.
//
// The label parameter may contain arbitrary data that will not be encrypted,
// but which gives important context to the message. For example, if a given
// public key is used to decrypt two types of messages then distinct label
// values could be used to ensure that a ciphertext for one purpose cannot be
// used for another by an attacker. If not required it can be empty.
//
// The message must be no longer than the length of the public modulus less
// twice the hash length plus 2.
func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error) {
if err := checkPub(pub); err != nil {
return nil, err
}
hash.Reset()
k := (pub.N.BitLen() + 7) / 8
if len(msg) > k-2*hash.Size()-2 {
err = ErrMessageTooLong
return
}
hash.Write(label)
lHash := hash.Sum(nil)
hash.Reset()
em := make([]byte, k)
seed := em[1 : 1+hash.Size()]
db := em[1+hash.Size():]
copy(db[0:hash.Size()], lHash)
db[len(db)-len(msg)-1] = 1
copy(db[len(db)-len(msg):], msg)
_, err = io.ReadFull(random, seed)
if err != nil {
return
}
mgf1XOR(db, hash, seed)
mgf1XOR(seed, hash, db)
m := new(big.Int)
m.SetBytes(em)
c := encrypt(new(big.Int), pub, m)
out = c.Bytes()
if len(out) < k {
// If the output is too small, we need to left-pad with zeros.
t := make([]byte, k)
copy(t[k-len(out):], out)
out = t
}
return
}
// ErrDecryption represents a failure to decrypt a message.
// It is deliberately vague to avoid adaptive attacks.
var ErrDecryption = errors.New("crypto/rsa: decryption error")
// ErrVerification represents a failure to verify a signature.
// It is deliberately vague to avoid adaptive attacks.
var ErrVerification = errors.New("crypto/rsa: verification error")
// modInverse returns ia, the inverse of a in the multiplicative group of prime
// order n. It requires that a be a member of the group (i.e. less than n).
func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
g := new(big.Int)
x := new(big.Int)
y := new(big.Int)
g.GCD(x, y, a, n)
if g.Cmp(bigOne) != 0 {
// In this case, a and n aren't coprime and we cannot calculate
// the inverse. This happens because the values of n are nearly
// prime (being the product of two primes) rather than truly
// prime.
return
}
if x.Cmp(bigOne) < 0 {
// 0 is not the multiplicative inverse of any element so, if x
// < 1, then x is negative.
x.Add(x, n)
}
return x, true
}
// Precompute performs some calculations that speed up private key operations
// in the future.
func (priv *PrivateKey) Precompute() {
if priv.Precomputed.Dp != nil {
return
}
priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
for i := 2; i < len(priv.Primes); i++ {
prime := priv.Primes[i]
values := &priv.Precomputed.CRTValues[i-2]
values.Exp = new(big.Int).Sub(prime, bigOne)
values.Exp.Mod(priv.D, values.Exp)
values.R = new(big.Int).Set(r)
values.Coeff = new(big.Int).ModInverse(r, prime)
r.Mul(r, prime)
}
}
// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
// random source is given, RSA blinding is used.
func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
// TODO(agl): can we get away with reusing blinds?
if c.Cmp(priv.N) > 0 {
err = ErrDecryption
return
}
var ir *big.Int
if random != nil {
// Blinding enabled. Blinding involves multiplying c by r^e.
// Then the decryption operation performs (m^e * r^e)^d mod n
// which equals mr mod n. The factor of r can then be removed
// by multiplying by the multiplicative inverse of r.
var r *big.Int
for {
r, err = rand.Int(random, priv.N)
if err != nil {
return
}
if r.Cmp(bigZero) == 0 {
r = bigOne
}
var ok bool
ir, ok = modInverse(r, priv.N)
if ok {
break
}
}
bigE := big.NewInt(int64(priv.E))
rpowe := new(big.Int).Exp(r, bigE, priv.N)
cCopy := new(big.Int).Set(c)
cCopy.Mul(cCopy, rpowe)
cCopy.Mod(cCopy, priv.N)
c = cCopy
}
if priv.Precomputed.Dp == nil {
m = new(big.Int).Exp(c, priv.D, priv.N)
} else {
// We have the precalculated values needed for the CRT.
m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
m.Sub(m, m2)
if m.Sign() < 0 {
m.Add(m, priv.Primes[0])
}
m.Mul(m, priv.Precomputed.Qinv)
m.Mod(m, priv.Primes[0])
m.Mul(m, priv.Primes[1])
m.Add(m, m2)
for i, values := range priv.Precomputed.CRTValues {
prime := priv.Primes[2+i]
m2.Exp(c, values.Exp, prime)
m2.Sub(m2, m)
m2.Mul(m2, values.Coeff)
m2.Mod(m2, prime)
if m2.Sign() < 0 {
m2.Add(m2, prime)
}
m2.Mul(m2, values.R)
m.Add(m, m2)
}
}
if ir != nil {
// Unblind.
m.Mul(m, ir)
m.Mod(m, priv.N)
}
return
}
func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
m, err = decrypt(random, priv, c)
if err != nil {
return nil, err
}
// In order to defend against errors in the CRT computation, m^e is
// calculated, which should match the original ciphertext.
check := encrypt(new(big.Int), &priv.PublicKey, m)
if c.Cmp(check) != 0 {
return nil, errors.New("rsa: internal error")
}
return m, nil
}
// DecryptOAEP decrypts ciphertext using RSA-OAEP.
// OAEP is parameterised by a hash function that is used as a random oracle.
// Encryption and decryption of a given message must use the same hash function
// and sha256.New() is a reasonable choice.
//
// The random parameter, if not nil, is used to blind the private-key operation
// and avoid timing side-channel attacks. Blinding is purely internal to this
// function the random data need not match that used when encrypting.
//
// The label parameter must match the value given when encrypting. See
// EncryptOAEP for details.
func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err error) {
if err := checkPub(&priv.PublicKey); err != nil {
return nil, err
}
k := (priv.N.BitLen() + 7) / 8
if len(ciphertext) > k ||
k < hash.Size()*2+2 {
err = ErrDecryption
return
}
c := new(big.Int).SetBytes(ciphertext)
m, err := decrypt(random, priv, c)
if err != nil {
return
}
hash.Write(label)
lHash := hash.Sum(nil)
hash.Reset()
// Converting the plaintext number to bytes will strip any
// leading zeros so we may have to left pad. We do this unconditionally
// to avoid leaking timing information. (Although we still probably
// leak the number of leading zeros. It's not clear that we can do
// anything about this.)
em := leftPad(m.Bytes(), k)
firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
seed := em[1 : hash.Size()+1]
db := em[hash.Size()+1:]
mgf1XOR(seed, hash, db)
mgf1XOR(db, hash, seed)
lHash2 := db[0:hash.Size()]
// We have to validate the plaintext in constant time in order to avoid
// attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
// Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
// v2.0. In J. Kilian, editor, Advances in Cryptology.
lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
// The remainder of the plaintext must be zero or more 0x00, followed
// by 0x01, followed by the message.
// lookingForIndex: 1 iff we are still looking for the 0x01
// index: the offset of the first 0x01 byte
// invalid: 1 iff we saw a non-zero byte before the 0x01.
var lookingForIndex, index, invalid int
lookingForIndex = 1
rest := db[hash.Size():]
for i := 0; i < len(rest); i++ {
equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
}
if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
err = ErrDecryption
return
}
msg = rest[index+1:]
return
}
// leftPad returns a new slice of length size. The contents of input are right
// aligned in the new slice.
func leftPad(input []byte, size int) (out []byte) {
n := len(input)
if n > size {
n = size
}
out = make([]byte, size)
copy(out[len(out)-n:], input)
return
}