1
1
mirror of https://github.com/go-gitea/gitea synced 2024-11-18 08:04:25 +00:00
gitea/vendor/github.com/alecthomas/chroma/regexp.go
6543 fae07cbc8f
Update Vendor (#16325)
* Add Dependencie Update Script

* update gitea.com/lunny/levelqueue

* update github.com/PuerkitoBio/goquery

* update github.com/alecthomas/chroma

* update github.com/blevesearch/bleve/v2

* update github.com/caddyserver/certmagic

* update github.com/go-enry/go-enry/v2

* update github.com/go-redis/redis/v8

* update github.com/hashicorp/golang-lru

* update github.com/klauspost/compress

* update github.com/markbates/goth

* update github.com/mholt/archiver/v3

* update github.com/microcosm-cc/bluemonday

* update github.com/minio/minio-go/v7

* update github.com/olivere/elastic/v7

* update github.com/xanzy/go-gitlab

* update github.com/yuin/goldmark
2021-07-04 04:06:10 +02:00

566 lines
15 KiB
Go
Vendored

package chroma
import (
"fmt"
"os"
"regexp"
"sort"
"strings"
"sync"
"time"
"unicode/utf8"
"github.com/dlclark/regexp2"
)
// A Rule is the fundamental matching unit of the Regex lexer state machine.
type Rule struct {
Pattern string
Type Emitter
Mutator Mutator
}
// An Emitter takes group matches and returns tokens.
type Emitter interface {
// Emit tokens for the given regex groups.
Emit(groups []string, state *LexerState) Iterator
}
// EmitterFunc is a function that is an Emitter.
type EmitterFunc func(groups []string, state *LexerState) Iterator
// Emit tokens for groups.
func (e EmitterFunc) Emit(groups []string, state *LexerState) Iterator {
return e(groups, state)
}
// ByGroups emits a token for each matching group in the rule's regex.
func ByGroups(emitters ...Emitter) Emitter {
return EmitterFunc(func(groups []string, state *LexerState) Iterator {
iterators := make([]Iterator, 0, len(groups)-1)
if len(emitters) != len(groups)-1 {
iterators = append(iterators, Error.Emit(groups, state))
// panic(errors.Errorf("number of groups %q does not match number of emitters %v", groups, emitters))
} else {
for i, group := range groups[1:] {
if emitters[i] != nil {
iterators = append(iterators, emitters[i].Emit([]string{group}, state))
}
}
}
return Concaterator(iterators...)
})
}
// ByGroupNames emits a token for each named matching group in the rule's regex.
func ByGroupNames(emitters map[string]Emitter) Emitter {
return EmitterFunc(func(groups []string, state *LexerState) Iterator {
iterators := make([]Iterator, 0, len(state.NamedGroups)-1)
if len(state.NamedGroups)-1 == 0 {
if emitter, ok := emitters[`0`]; ok {
iterators = append(iterators, emitter.Emit(groups, state))
} else {
iterators = append(iterators, Error.Emit(groups, state))
}
} else {
ruleRegex := state.Rules[state.State][state.Rule].Regexp
for i := 1; i < len(state.NamedGroups); i++ {
groupName := ruleRegex.GroupNameFromNumber(i)
group := state.NamedGroups[groupName]
if emitter, ok := emitters[groupName]; ok {
if emitter != nil {
iterators = append(iterators, emitter.Emit([]string{group}, state))
}
} else {
iterators = append(iterators, Error.Emit([]string{group}, state))
}
}
}
return Concaterator(iterators...)
})
}
// UsingByGroup emits tokens for the matched groups in the regex using a
// "sublexer". Used when lexing code blocks where the name of a sublexer is
// contained within the block, for example on a Markdown text block or SQL
// language block.
//
// The sublexer will be retrieved using sublexerGetFunc (typically
// internal.Get), using the captured value from the matched sublexerNameGroup.
//
// If sublexerGetFunc returns a non-nil lexer for the captured sublexerNameGroup,
// then tokens for the matched codeGroup will be emitted using the retrieved
// lexer. Otherwise, if the sublexer is nil, then tokens will be emitted from
// the passed emitter.
//
// Example:
//
// var Markdown = internal.Register(MustNewLexer(
// &Config{
// Name: "markdown",
// Aliases: []string{"md", "mkd"},
// Filenames: []string{"*.md", "*.mkd", "*.markdown"},
// MimeTypes: []string{"text/x-markdown"},
// },
// Rules{
// "root": {
// {"^(```)(\\w+)(\\n)([\\w\\W]*?)(^```$)",
// UsingByGroup(
// internal.Get,
// 2, 4,
// String, String, String, Text, String,
// ),
// nil,
// },
// },
// },
// ))
//
// See the lexers/m/markdown.go for the complete example.
//
// Note: panic's if the number emitters does not equal the number of matched
// groups in the regex.
func UsingByGroup(sublexerGetFunc func(string) Lexer, sublexerNameGroup, codeGroup int, emitters ...Emitter) Emitter {
return EmitterFunc(func(groups []string, state *LexerState) Iterator {
// bounds check
if len(emitters) != len(groups)-1 {
panic("UsingByGroup expects number of emitters to be the same as len(groups)-1")
}
// grab sublexer
sublexer := sublexerGetFunc(groups[sublexerNameGroup])
// build iterators
iterators := make([]Iterator, len(groups)-1)
for i, group := range groups[1:] {
if i == codeGroup-1 && sublexer != nil {
var err error
iterators[i], err = sublexer.Tokenise(nil, groups[codeGroup])
if err != nil {
panic(err)
}
} else if emitters[i] != nil {
iterators[i] = emitters[i].Emit([]string{group}, state)
}
}
return Concaterator(iterators...)
})
}
// Using returns an Emitter that uses a given Lexer for parsing and emitting.
func Using(lexer Lexer) Emitter {
return EmitterFunc(func(groups []string, _ *LexerState) Iterator {
it, err := lexer.Tokenise(&TokeniseOptions{State: "root", Nested: true}, groups[0])
if err != nil {
panic(err)
}
return it
})
}
// UsingSelf is like Using, but uses the current Lexer.
func UsingSelf(stateName string) Emitter {
return EmitterFunc(func(groups []string, state *LexerState) Iterator {
it, err := state.Lexer.Tokenise(&TokeniseOptions{State: stateName, Nested: true}, groups[0])
if err != nil {
panic(err)
}
return it
})
}
// Words creates a regex that matches any of the given literal words.
func Words(prefix, suffix string, words ...string) string {
sort.Slice(words, func(i, j int) bool {
return len(words[j]) < len(words[i])
})
for i, word := range words {
words[i] = regexp.QuoteMeta(word)
}
return prefix + `(` + strings.Join(words, `|`) + `)` + suffix
}
// Tokenise text using lexer, returning tokens as a slice.
func Tokenise(lexer Lexer, options *TokeniseOptions, text string) ([]Token, error) {
var out []Token
it, err := lexer.Tokenise(options, text)
if err != nil {
return nil, err
}
for t := it(); t != EOF; t = it() {
out = append(out, t)
}
return out, nil
}
// Rules maps from state to a sequence of Rules.
type Rules map[string][]Rule
// Rename clones rules then a rule.
func (r Rules) Rename(oldRule, newRule string) Rules {
r = r.Clone()
r[newRule] = r[oldRule]
delete(r, oldRule)
return r
}
// Clone returns a clone of the Rules.
func (r Rules) Clone() Rules {
out := map[string][]Rule{}
for key, rules := range r {
out[key] = make([]Rule, len(rules))
copy(out[key], rules)
}
return out
}
// Merge creates a clone of "r" then merges "rules" into the clone.
func (r Rules) Merge(rules Rules) Rules {
out := r.Clone()
for k, v := range rules.Clone() {
out[k] = v
}
return out
}
// MustNewLazyLexer creates a new Lexer with deferred rules generation or panics.
func MustNewLazyLexer(config *Config, rulesFunc func() Rules) *RegexLexer {
lexer, err := NewLazyLexer(config, rulesFunc)
if err != nil {
panic(err)
}
return lexer
}
// NewLazyLexer creates a new regex-based Lexer with deferred rules generation.
func NewLazyLexer(config *Config, rulesFunc func() Rules) (*RegexLexer, error) {
if config == nil {
config = &Config{}
}
return &RegexLexer{
config: config,
compilerFunc: rulesFunc,
}, nil
}
// MustNewLexer creates a new Lexer or panics.
//
// Deprecated: Use MustNewLazyLexer instead.
func MustNewLexer(config *Config, rules Rules) *RegexLexer { // nolint: forbidigo
lexer, err := NewLexer(config, rules) // nolint: forbidigo
if err != nil {
panic(err)
}
return lexer
}
// NewLexer creates a new regex-based Lexer.
//
// "rules" is a state machine transitition map. Each key is a state. Values are sets of rules
// that match input, optionally modify lexer state, and output tokens.
//
// Deprecated: Use NewLazyLexer instead.
func NewLexer(config *Config, rules Rules) (*RegexLexer, error) { // nolint: forbidigo
return NewLazyLexer(config, func() Rules { return rules })
}
// Trace enables debug tracing.
func (r *RegexLexer) Trace(trace bool) *RegexLexer {
r.trace = trace
return r
}
// A CompiledRule is a Rule with a pre-compiled regex.
//
// Note that regular expressions are lazily compiled on first use of the lexer.
type CompiledRule struct {
Rule
Regexp *regexp2.Regexp
flags string
}
// CompiledRules is a map of rule name to sequence of compiled rules in that rule.
type CompiledRules map[string][]*CompiledRule
// LexerState contains the state for a single lex.
type LexerState struct {
Lexer *RegexLexer
Text []rune
Pos int
Rules CompiledRules
Stack []string
State string
Rule int
// Group matches.
Groups []string
// Named Group matches.
NamedGroups map[string]string
// Custum context for mutators.
MutatorContext map[interface{}]interface{}
iteratorStack []Iterator
options *TokeniseOptions
newlineAdded bool
}
// Set mutator context.
func (l *LexerState) Set(key interface{}, value interface{}) {
l.MutatorContext[key] = value
}
// Get mutator context.
func (l *LexerState) Get(key interface{}) interface{} {
return l.MutatorContext[key]
}
// Iterator returns the next Token from the lexer.
func (l *LexerState) Iterator() Token { // nolint: gocognit
end := len(l.Text)
if l.newlineAdded {
end--
}
for l.Pos < end && len(l.Stack) > 0 {
// Exhaust the iterator stack, if any.
for len(l.iteratorStack) > 0 {
n := len(l.iteratorStack) - 1
t := l.iteratorStack[n]()
if t == EOF {
l.iteratorStack = l.iteratorStack[:n]
continue
}
return t
}
l.State = l.Stack[len(l.Stack)-1]
if l.Lexer.trace {
fmt.Fprintf(os.Stderr, "%s: pos=%d, text=%q\n", l.State, l.Pos, string(l.Text[l.Pos:]))
}
selectedRule, ok := l.Rules[l.State]
if !ok {
panic("unknown state " + l.State)
}
ruleIndex, rule, groups, namedGroups := matchRules(l.Text, l.Pos, selectedRule)
// No match.
if groups == nil {
// From Pygments :\
//
// If the RegexLexer encounters a newline that is flagged as an error token, the stack is
// emptied and the lexer continues scanning in the 'root' state. This can help producing
// error-tolerant highlighting for erroneous input, e.g. when a single-line string is not
// closed.
if l.Text[l.Pos] == '\n' && l.State != l.options.State {
l.Stack = []string{l.options.State}
continue
}
l.Pos++
return Token{Error, string(l.Text[l.Pos-1 : l.Pos])}
}
l.Rule = ruleIndex
l.Groups = groups
l.NamedGroups = namedGroups
l.Pos += utf8.RuneCountInString(groups[0])
if rule.Mutator != nil {
if err := rule.Mutator.Mutate(l); err != nil {
panic(err)
}
}
if rule.Type != nil {
l.iteratorStack = append(l.iteratorStack, rule.Type.Emit(l.Groups, l))
}
}
// Exhaust the IteratorStack, if any.
// Duplicate code, but eh.
for len(l.iteratorStack) > 0 {
n := len(l.iteratorStack) - 1
t := l.iteratorStack[n]()
if t == EOF {
l.iteratorStack = l.iteratorStack[:n]
continue
}
return t
}
// If we get to here and we still have text, return it as an error.
if l.Pos != len(l.Text) && len(l.Stack) == 0 {
value := string(l.Text[l.Pos:])
l.Pos = len(l.Text)
return Token{Type: Error, Value: value}
}
return EOF
}
// RegexLexer is the default lexer implementation used in Chroma.
type RegexLexer struct {
config *Config
analyser func(text string) float32
trace bool
mu sync.Mutex
compiled bool
rules map[string][]*CompiledRule
compilerFunc func() Rules
compileOnce sync.Once
}
// SetAnalyser sets the analyser function used to perform content inspection.
func (r *RegexLexer) SetAnalyser(analyser func(text string) float32) *RegexLexer {
r.analyser = analyser
return r
}
func (r *RegexLexer) AnalyseText(text string) float32 { // nolint
if r.analyser != nil {
return r.analyser(text)
}
return 0.0
}
func (r *RegexLexer) Config() *Config { // nolint
return r.config
}
// Regex compilation is deferred until the lexer is used. This is to avoid significant init() time costs.
func (r *RegexLexer) maybeCompile() (err error) {
r.mu.Lock()
defer r.mu.Unlock()
if r.compiled {
return nil
}
for state, rules := range r.rules {
for i, rule := range rules {
if rule.Regexp == nil {
pattern := "(?:" + rule.Pattern + ")"
if rule.flags != "" {
pattern = "(?" + rule.flags + ")" + pattern
}
pattern = `\G` + pattern
rule.Regexp, err = regexp2.Compile(pattern, regexp2.RE2)
if err != nil {
return fmt.Errorf("failed to compile rule %s.%d: %s", state, i, err)
}
rule.Regexp.MatchTimeout = time.Millisecond * 250
}
}
}
restart:
seen := map[LexerMutator]bool{}
for state := range r.rules {
for i := 0; i < len(r.rules[state]); i++ {
rule := r.rules[state][i]
if compile, ok := rule.Mutator.(LexerMutator); ok {
if seen[compile] {
return fmt.Errorf("saw mutator %T twice; this should not happen", compile)
}
seen[compile] = true
if err := compile.MutateLexer(r.rules, state, i); err != nil {
return err
}
// Process the rules again in case the mutator added/removed rules.
//
// This sounds bad, but shouldn't be significant in practice.
goto restart
}
}
}
r.compiled = true
return nil
}
func (r *RegexLexer) compileRules() error {
rules := r.compilerFunc()
if _, ok := rules["root"]; !ok {
return fmt.Errorf("no \"root\" state")
}
compiledRules := map[string][]*CompiledRule{}
for state, rules := range rules {
compiledRules[state] = nil
for _, rule := range rules {
flags := ""
if !r.config.NotMultiline {
flags += "m"
}
if r.config.CaseInsensitive {
flags += "i"
}
if r.config.DotAll {
flags += "s"
}
compiledRules[state] = append(compiledRules[state], &CompiledRule{Rule: rule, flags: flags})
}
}
r.rules = compiledRules
return nil
}
func (r *RegexLexer) Tokenise(options *TokeniseOptions, text string) (Iterator, error) { // nolint
var err error
if r.compilerFunc != nil {
r.compileOnce.Do(func() {
err = r.compileRules()
})
}
if err != nil {
return nil, err
}
if err := r.maybeCompile(); err != nil {
return nil, err
}
if options == nil {
options = defaultOptions
}
if options.EnsureLF {
text = ensureLF(text)
}
newlineAdded := false
if !options.Nested && r.config.EnsureNL && !strings.HasSuffix(text, "\n") {
text += "\n"
newlineAdded = true
}
state := &LexerState{
newlineAdded: newlineAdded,
options: options,
Lexer: r,
Text: []rune(text),
Stack: []string{options.State},
Rules: r.rules,
MutatorContext: map[interface{}]interface{}{},
}
return state.Iterator, nil
}
func matchRules(text []rune, pos int, rules []*CompiledRule) (int, *CompiledRule, []string, map[string]string) {
for i, rule := range rules {
match, err := rule.Regexp.FindRunesMatchStartingAt(text, pos)
if match != nil && err == nil && match.Index == pos {
groups := []string{}
namedGroups := make(map[string]string)
for _, g := range match.Groups() {
namedGroups[g.Name] = g.String()
groups = append(groups, g.String())
}
return i, rule, groups, namedGroups
}
}
return 0, &CompiledRule{}, nil, nil
}
// replace \r and \r\n with \n
// same as strings.ReplaceAll but more efficient
func ensureLF(text string) string {
buf := make([]byte, len(text))
var j int
for i := 0; i < len(text); i++ {
c := text[i]
if c == '\r' {
if i < len(text)-1 && text[i+1] == '\n' {
continue
}
c = '\n'
}
buf[j] = c
j++
}
return string(buf[:j])
}