mirror of
				https://github.com/go-gitea/gitea
				synced 2025-10-31 19:38:23 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			857 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			857 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2011 The Snappy-Go Authors. All rights reserved.
 | |
| // Modified for deflate by Klaus Post (c) 2015.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package flate
 | |
| 
 | |
| // emitLiteral writes a literal chunk and returns the number of bytes written.
 | |
| func emitLiteral(dst *tokens, lit []byte) {
 | |
| 	ol := int(dst.n)
 | |
| 	for i, v := range lit {
 | |
| 		dst.tokens[(i+ol)&maxStoreBlockSize] = token(v)
 | |
| 	}
 | |
| 	dst.n += uint16(len(lit))
 | |
| }
 | |
| 
 | |
| // emitCopy writes a copy chunk and returns the number of bytes written.
 | |
| func emitCopy(dst *tokens, offset, length int) {
 | |
| 	dst.tokens[dst.n] = matchToken(uint32(length-3), uint32(offset-minOffsetSize))
 | |
| 	dst.n++
 | |
| }
 | |
| 
 | |
| type snappyEnc interface {
 | |
| 	Encode(dst *tokens, src []byte)
 | |
| 	Reset()
 | |
| }
 | |
| 
 | |
| func newSnappy(level int) snappyEnc {
 | |
| 	switch level {
 | |
| 	case 1:
 | |
| 		return &snappyL1{}
 | |
| 	case 2:
 | |
| 		return &snappyL2{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}
 | |
| 	case 3:
 | |
| 		return &snappyL3{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}
 | |
| 	case 4:
 | |
| 		return &snappyL4{snappyL3{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}}
 | |
| 	default:
 | |
| 		panic("invalid level specified")
 | |
| 	}
 | |
| }
 | |
| 
 | |
| const (
 | |
| 	tableBits       = 14             // Bits used in the table
 | |
| 	tableSize       = 1 << tableBits // Size of the table
 | |
| 	tableMask       = tableSize - 1  // Mask for table indices. Redundant, but can eliminate bounds checks.
 | |
| 	tableShift      = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32.
 | |
| 	baseMatchOffset = 1              // The smallest match offset
 | |
| 	baseMatchLength = 3              // The smallest match length per the RFC section 3.2.5
 | |
| 	maxMatchOffset  = 1 << 15        // The largest match offset
 | |
| )
 | |
| 
 | |
| func load32(b []byte, i int) uint32 {
 | |
| 	b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
 | |
| 	return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
 | |
| }
 | |
| 
 | |
| func load64(b []byte, i int) uint64 {
 | |
| 	b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
 | |
| 	return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
 | |
| 		uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
 | |
| }
 | |
| 
 | |
| func hash(u uint32) uint32 {
 | |
| 	return (u * 0x1e35a7bd) >> tableShift
 | |
| }
 | |
| 
 | |
| // snappyL1 encapsulates level 1 compression
 | |
| type snappyL1 struct{}
 | |
| 
 | |
| func (e *snappyL1) Reset() {}
 | |
| 
 | |
| func (e *snappyL1) Encode(dst *tokens, src []byte) {
 | |
| 	const (
 | |
| 		inputMargin            = 16 - 1
 | |
| 		minNonLiteralBlockSize = 1 + 1 + inputMargin
 | |
| 	)
 | |
| 
 | |
| 	// This check isn't in the Snappy implementation, but there, the caller
 | |
| 	// instead of the callee handles this case.
 | |
| 	if len(src) < minNonLiteralBlockSize {
 | |
| 		// We do not fill the token table.
 | |
| 		// This will be picked up by caller.
 | |
| 		dst.n = uint16(len(src))
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// Initialize the hash table.
 | |
| 	//
 | |
| 	// The table element type is uint16, as s < sLimit and sLimit < len(src)
 | |
| 	// and len(src) <= maxStoreBlockSize and maxStoreBlockSize == 65535.
 | |
| 	var table [tableSize]uint16
 | |
| 
 | |
| 	// sLimit is when to stop looking for offset/length copies. The inputMargin
 | |
| 	// lets us use a fast path for emitLiteral in the main loop, while we are
 | |
| 	// looking for copies.
 | |
| 	sLimit := len(src) - inputMargin
 | |
| 
 | |
| 	// nextEmit is where in src the next emitLiteral should start from.
 | |
| 	nextEmit := 0
 | |
| 
 | |
| 	// The encoded form must start with a literal, as there are no previous
 | |
| 	// bytes to copy, so we start looking for hash matches at s == 1.
 | |
| 	s := 1
 | |
| 	nextHash := hash(load32(src, s))
 | |
| 
 | |
| 	for {
 | |
| 		// Copied from the C++ snappy implementation:
 | |
| 		//
 | |
| 		// Heuristic match skipping: If 32 bytes are scanned with no matches
 | |
| 		// found, start looking only at every other byte. If 32 more bytes are
 | |
| 		// scanned (or skipped), look at every third byte, etc.. When a match
 | |
| 		// is found, immediately go back to looking at every byte. This is a
 | |
| 		// small loss (~5% performance, ~0.1% density) for compressible data
 | |
| 		// due to more bookkeeping, but for non-compressible data (such as
 | |
| 		// JPEG) it's a huge win since the compressor quickly "realizes" the
 | |
| 		// data is incompressible and doesn't bother looking for matches
 | |
| 		// everywhere.
 | |
| 		//
 | |
| 		// The "skip" variable keeps track of how many bytes there are since
 | |
| 		// the last match; dividing it by 32 (ie. right-shifting by five) gives
 | |
| 		// the number of bytes to move ahead for each iteration.
 | |
| 		skip := 32
 | |
| 
 | |
| 		nextS := s
 | |
| 		candidate := 0
 | |
| 		for {
 | |
| 			s = nextS
 | |
| 			bytesBetweenHashLookups := skip >> 5
 | |
| 			nextS = s + bytesBetweenHashLookups
 | |
| 			skip += bytesBetweenHashLookups
 | |
| 			if nextS > sLimit {
 | |
| 				goto emitRemainder
 | |
| 			}
 | |
| 			candidate = int(table[nextHash&tableMask])
 | |
| 			table[nextHash&tableMask] = uint16(s)
 | |
| 			nextHash = hash(load32(src, nextS))
 | |
| 			// TODO: < should be <=, and add a test for that.
 | |
| 			if s-candidate < maxMatchOffset && load32(src, s) == load32(src, candidate) {
 | |
| 				break
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// A 4-byte match has been found. We'll later see if more than 4 bytes
 | |
| 		// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
 | |
| 		// them as literal bytes.
 | |
| 		emitLiteral(dst, src[nextEmit:s])
 | |
| 
 | |
| 		// Call emitCopy, and then see if another emitCopy could be our next
 | |
| 		// move. Repeat until we find no match for the input immediately after
 | |
| 		// what was consumed by the last emitCopy call.
 | |
| 		//
 | |
| 		// If we exit this loop normally then we need to call emitLiteral next,
 | |
| 		// though we don't yet know how big the literal will be. We handle that
 | |
| 		// by proceeding to the next iteration of the main loop. We also can
 | |
| 		// exit this loop via goto if we get close to exhausting the input.
 | |
| 		for {
 | |
| 			// Invariant: we have a 4-byte match at s, and no need to emit any
 | |
| 			// literal bytes prior to s.
 | |
| 			base := s
 | |
| 
 | |
| 			// Extend the 4-byte match as long as possible.
 | |
| 			//
 | |
| 			// This is an inlined version of Snappy's:
 | |
| 			//	s = extendMatch(src, candidate+4, s+4)
 | |
| 			s += 4
 | |
| 			s1 := base + maxMatchLength
 | |
| 			if s1 > len(src) {
 | |
| 				s1 = len(src)
 | |
| 			}
 | |
| 			a := src[s:s1]
 | |
| 			b := src[candidate+4:]
 | |
| 			b = b[:len(a)]
 | |
| 			l := len(a)
 | |
| 			for i := range a {
 | |
| 				if a[i] != b[i] {
 | |
| 					l = i
 | |
| 					break
 | |
| 				}
 | |
| 			}
 | |
| 			s += l
 | |
| 
 | |
| 			// matchToken is flate's equivalent of Snappy's emitCopy.
 | |
| 			dst.tokens[dst.n] = matchToken(uint32(s-base-baseMatchLength), uint32(base-candidate-baseMatchOffset))
 | |
| 			dst.n++
 | |
| 			nextEmit = s
 | |
| 			if s >= sLimit {
 | |
| 				goto emitRemainder
 | |
| 			}
 | |
| 
 | |
| 			// We could immediately start working at s now, but to improve
 | |
| 			// compression we first update the hash table at s-1 and at s. If
 | |
| 			// another emitCopy is not our next move, also calculate nextHash
 | |
| 			// at s+1. At least on GOARCH=amd64, these three hash calculations
 | |
| 			// are faster as one load64 call (with some shifts) instead of
 | |
| 			// three load32 calls.
 | |
| 			x := load64(src, s-1)
 | |
| 			prevHash := hash(uint32(x >> 0))
 | |
| 			table[prevHash&tableMask] = uint16(s - 1)
 | |
| 			currHash := hash(uint32(x >> 8))
 | |
| 			candidate = int(table[currHash&tableMask])
 | |
| 			table[currHash&tableMask] = uint16(s)
 | |
| 			// TODO: >= should be >, and add a test for that.
 | |
| 			if s-candidate >= maxMatchOffset || uint32(x>>8) != load32(src, candidate) {
 | |
| 				nextHash = hash(uint32(x >> 16))
 | |
| 				s++
 | |
| 				break
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| emitRemainder:
 | |
| 	if nextEmit < len(src) {
 | |
| 		emitLiteral(dst, src[nextEmit:])
 | |
| 	}
 | |
| }
 | |
| 
 | |
| type tableEntry struct {
 | |
| 	val    uint32
 | |
| 	offset int32
 | |
| }
 | |
| 
 | |
| func load3232(b []byte, i int32) uint32 {
 | |
| 	b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
 | |
| 	return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
 | |
| }
 | |
| 
 | |
| func load6432(b []byte, i int32) uint64 {
 | |
| 	b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
 | |
| 	return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
 | |
| 		uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
 | |
| }
 | |
| 
 | |
| // snappyGen maintains the table for matches,
 | |
| // and the previous byte block for level 2.
 | |
| // This is the generic implementation.
 | |
| type snappyGen struct {
 | |
| 	prev []byte
 | |
| 	cur  int32
 | |
| }
 | |
| 
 | |
| // snappyGen maintains the table for matches,
 | |
| // and the previous byte block for level 2.
 | |
| // This is the generic implementation.
 | |
| type snappyL2 struct {
 | |
| 	snappyGen
 | |
| 	table [tableSize]tableEntry
 | |
| }
 | |
| 
 | |
| // EncodeL2 uses a similar algorithm to level 1, but is capable
 | |
| // of matching across blocks giving better compression at a small slowdown.
 | |
| func (e *snappyL2) Encode(dst *tokens, src []byte) {
 | |
| 	const (
 | |
| 		inputMargin            = 16 - 1
 | |
| 		minNonLiteralBlockSize = 1 + 1 + inputMargin
 | |
| 	)
 | |
| 
 | |
| 	// Ensure that e.cur doesn't wrap, mainly an issue on 32 bits.
 | |
| 	if e.cur > 1<<30 {
 | |
| 		for i := range e.table {
 | |
| 			e.table[i] = tableEntry{}
 | |
| 		}
 | |
| 		e.cur = maxStoreBlockSize
 | |
| 	}
 | |
| 
 | |
| 	// This check isn't in the Snappy implementation, but there, the caller
 | |
| 	// instead of the callee handles this case.
 | |
| 	if len(src) < minNonLiteralBlockSize {
 | |
| 		// We do not fill the token table.
 | |
| 		// This will be picked up by caller.
 | |
| 		dst.n = uint16(len(src))
 | |
| 		e.cur += maxStoreBlockSize
 | |
| 		e.prev = e.prev[:0]
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// sLimit is when to stop looking for offset/length copies. The inputMargin
 | |
| 	// lets us use a fast path for emitLiteral in the main loop, while we are
 | |
| 	// looking for copies.
 | |
| 	sLimit := int32(len(src) - inputMargin)
 | |
| 
 | |
| 	// nextEmit is where in src the next emitLiteral should start from.
 | |
| 	nextEmit := int32(0)
 | |
| 	s := int32(0)
 | |
| 	cv := load3232(src, s)
 | |
| 	nextHash := hash(cv)
 | |
| 
 | |
| 	for {
 | |
| 		// Copied from the C++ snappy implementation:
 | |
| 		//
 | |
| 		// Heuristic match skipping: If 32 bytes are scanned with no matches
 | |
| 		// found, start looking only at every other byte. If 32 more bytes are
 | |
| 		// scanned (or skipped), look at every third byte, etc.. When a match
 | |
| 		// is found, immediately go back to looking at every byte. This is a
 | |
| 		// small loss (~5% performance, ~0.1% density) for compressible data
 | |
| 		// due to more bookkeeping, but for non-compressible data (such as
 | |
| 		// JPEG) it's a huge win since the compressor quickly "realizes" the
 | |
| 		// data is incompressible and doesn't bother looking for matches
 | |
| 		// everywhere.
 | |
| 		//
 | |
| 		// The "skip" variable keeps track of how many bytes there are since
 | |
| 		// the last match; dividing it by 32 (ie. right-shifting by five) gives
 | |
| 		// the number of bytes to move ahead for each iteration.
 | |
| 		skip := int32(32)
 | |
| 
 | |
| 		nextS := s
 | |
| 		var candidate tableEntry
 | |
| 		for {
 | |
| 			s = nextS
 | |
| 			bytesBetweenHashLookups := skip >> 5
 | |
| 			nextS = s + bytesBetweenHashLookups
 | |
| 			skip += bytesBetweenHashLookups
 | |
| 			if nextS > sLimit {
 | |
| 				goto emitRemainder
 | |
| 			}
 | |
| 			candidate = e.table[nextHash&tableMask]
 | |
| 			now := load3232(src, nextS)
 | |
| 			e.table[nextHash&tableMask] = tableEntry{offset: s + e.cur, val: cv}
 | |
| 			nextHash = hash(now)
 | |
| 
 | |
| 			offset := s - (candidate.offset - e.cur)
 | |
| 			if offset >= maxMatchOffset || cv != candidate.val {
 | |
| 				// Out of range or not matched.
 | |
| 				cv = now
 | |
| 				continue
 | |
| 			}
 | |
| 			break
 | |
| 		}
 | |
| 
 | |
| 		// A 4-byte match has been found. We'll later see if more than 4 bytes
 | |
| 		// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
 | |
| 		// them as literal bytes.
 | |
| 		emitLiteral(dst, src[nextEmit:s])
 | |
| 
 | |
| 		// Call emitCopy, and then see if another emitCopy could be our next
 | |
| 		// move. Repeat until we find no match for the input immediately after
 | |
| 		// what was consumed by the last emitCopy call.
 | |
| 		//
 | |
| 		// If we exit this loop normally then we need to call emitLiteral next,
 | |
| 		// though we don't yet know how big the literal will be. We handle that
 | |
| 		// by proceeding to the next iteration of the main loop. We also can
 | |
| 		// exit this loop via goto if we get close to exhausting the input.
 | |
| 		for {
 | |
| 			// Invariant: we have a 4-byte match at s, and no need to emit any
 | |
| 			// literal bytes prior to s.
 | |
| 
 | |
| 			// Extend the 4-byte match as long as possible.
 | |
| 			//
 | |
| 			s += 4
 | |
| 			t := candidate.offset - e.cur + 4
 | |
| 			l := e.matchlen(s, t, src)
 | |
| 
 | |
| 			// matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
 | |
| 			dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
 | |
| 			dst.n++
 | |
| 			s += l
 | |
| 			nextEmit = s
 | |
| 			if s >= sLimit {
 | |
| 				goto emitRemainder
 | |
| 			}
 | |
| 
 | |
| 			// We could immediately start working at s now, but to improve
 | |
| 			// compression we first update the hash table at s-1 and at s. If
 | |
| 			// another emitCopy is not our next move, also calculate nextHash
 | |
| 			// at s+1. At least on GOARCH=amd64, these three hash calculations
 | |
| 			// are faster as one load64 call (with some shifts) instead of
 | |
| 			// three load32 calls.
 | |
| 			x := load6432(src, s-1)
 | |
| 			prevHash := hash(uint32(x))
 | |
| 			e.table[prevHash&tableMask] = tableEntry{offset: e.cur + s - 1, val: uint32(x)}
 | |
| 			x >>= 8
 | |
| 			currHash := hash(uint32(x))
 | |
| 			candidate = e.table[currHash&tableMask]
 | |
| 			e.table[currHash&tableMask] = tableEntry{offset: e.cur + s, val: uint32(x)}
 | |
| 
 | |
| 			offset := s - (candidate.offset - e.cur)
 | |
| 			if offset >= maxMatchOffset || uint32(x) != candidate.val {
 | |
| 				cv = uint32(x >> 8)
 | |
| 				nextHash = hash(cv)
 | |
| 				s++
 | |
| 				break
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| emitRemainder:
 | |
| 	if int(nextEmit) < len(src) {
 | |
| 		emitLiteral(dst, src[nextEmit:])
 | |
| 	}
 | |
| 	e.cur += int32(len(src))
 | |
| 	e.prev = e.prev[:len(src)]
 | |
| 	copy(e.prev, src)
 | |
| }
 | |
| 
 | |
| type tableEntryPrev struct {
 | |
| 	Cur  tableEntry
 | |
| 	Prev tableEntry
 | |
| }
 | |
| 
 | |
| // snappyL3
 | |
| type snappyL3 struct {
 | |
| 	snappyGen
 | |
| 	table [tableSize]tableEntryPrev
 | |
| }
 | |
| 
 | |
| // Encode uses a similar algorithm to level 2, will check up to two candidates.
 | |
| func (e *snappyL3) Encode(dst *tokens, src []byte) {
 | |
| 	const (
 | |
| 		inputMargin            = 16 - 1
 | |
| 		minNonLiteralBlockSize = 1 + 1 + inputMargin
 | |
| 	)
 | |
| 
 | |
| 	// Ensure that e.cur doesn't wrap, mainly an issue on 32 bits.
 | |
| 	if e.cur > 1<<30 {
 | |
| 		for i := range e.table {
 | |
| 			e.table[i] = tableEntryPrev{}
 | |
| 		}
 | |
| 		e.cur = maxStoreBlockSize
 | |
| 	}
 | |
| 
 | |
| 	// This check isn't in the Snappy implementation, but there, the caller
 | |
| 	// instead of the callee handles this case.
 | |
| 	if len(src) < minNonLiteralBlockSize {
 | |
| 		// We do not fill the token table.
 | |
| 		// This will be picked up by caller.
 | |
| 		dst.n = uint16(len(src))
 | |
| 		e.cur += maxStoreBlockSize
 | |
| 		e.prev = e.prev[:0]
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// sLimit is when to stop looking for offset/length copies. The inputMargin
 | |
| 	// lets us use a fast path for emitLiteral in the main loop, while we are
 | |
| 	// looking for copies.
 | |
| 	sLimit := int32(len(src) - inputMargin)
 | |
| 
 | |
| 	// nextEmit is where in src the next emitLiteral should start from.
 | |
| 	nextEmit := int32(0)
 | |
| 	s := int32(0)
 | |
| 	cv := load3232(src, s)
 | |
| 	nextHash := hash(cv)
 | |
| 
 | |
| 	for {
 | |
| 		// Copied from the C++ snappy implementation:
 | |
| 		//
 | |
| 		// Heuristic match skipping: If 32 bytes are scanned with no matches
 | |
| 		// found, start looking only at every other byte. If 32 more bytes are
 | |
| 		// scanned (or skipped), look at every third byte, etc.. When a match
 | |
| 		// is found, immediately go back to looking at every byte. This is a
 | |
| 		// small loss (~5% performance, ~0.1% density) for compressible data
 | |
| 		// due to more bookkeeping, but for non-compressible data (such as
 | |
| 		// JPEG) it's a huge win since the compressor quickly "realizes" the
 | |
| 		// data is incompressible and doesn't bother looking for matches
 | |
| 		// everywhere.
 | |
| 		//
 | |
| 		// The "skip" variable keeps track of how many bytes there are since
 | |
| 		// the last match; dividing it by 32 (ie. right-shifting by five) gives
 | |
| 		// the number of bytes to move ahead for each iteration.
 | |
| 		skip := int32(32)
 | |
| 
 | |
| 		nextS := s
 | |
| 		var candidate tableEntry
 | |
| 		for {
 | |
| 			s = nextS
 | |
| 			bytesBetweenHashLookups := skip >> 5
 | |
| 			nextS = s + bytesBetweenHashLookups
 | |
| 			skip += bytesBetweenHashLookups
 | |
| 			if nextS > sLimit {
 | |
| 				goto emitRemainder
 | |
| 			}
 | |
| 			candidates := e.table[nextHash&tableMask]
 | |
| 			now := load3232(src, nextS)
 | |
| 			e.table[nextHash&tableMask] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}}
 | |
| 			nextHash = hash(now)
 | |
| 
 | |
| 			// Check both candidates
 | |
| 			candidate = candidates.Cur
 | |
| 			if cv == candidate.val {
 | |
| 				offset := s - (candidate.offset - e.cur)
 | |
| 				if offset < maxMatchOffset {
 | |
| 					break
 | |
| 				}
 | |
| 			} else {
 | |
| 				// We only check if value mismatches.
 | |
| 				// Offset will always be invalid in other cases.
 | |
| 				candidate = candidates.Prev
 | |
| 				if cv == candidate.val {
 | |
| 					offset := s - (candidate.offset - e.cur)
 | |
| 					if offset < maxMatchOffset {
 | |
| 						break
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			cv = now
 | |
| 		}
 | |
| 
 | |
| 		// A 4-byte match has been found. We'll later see if more than 4 bytes
 | |
| 		// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
 | |
| 		// them as literal bytes.
 | |
| 		emitLiteral(dst, src[nextEmit:s])
 | |
| 
 | |
| 		// Call emitCopy, and then see if another emitCopy could be our next
 | |
| 		// move. Repeat until we find no match for the input immediately after
 | |
| 		// what was consumed by the last emitCopy call.
 | |
| 		//
 | |
| 		// If we exit this loop normally then we need to call emitLiteral next,
 | |
| 		// though we don't yet know how big the literal will be. We handle that
 | |
| 		// by proceeding to the next iteration of the main loop. We also can
 | |
| 		// exit this loop via goto if we get close to exhausting the input.
 | |
| 		for {
 | |
| 			// Invariant: we have a 4-byte match at s, and no need to emit any
 | |
| 			// literal bytes prior to s.
 | |
| 
 | |
| 			// Extend the 4-byte match as long as possible.
 | |
| 			//
 | |
| 			s += 4
 | |
| 			t := candidate.offset - e.cur + 4
 | |
| 			l := e.matchlen(s, t, src)
 | |
| 
 | |
| 			// matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
 | |
| 			dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
 | |
| 			dst.n++
 | |
| 			s += l
 | |
| 			nextEmit = s
 | |
| 			if s >= sLimit {
 | |
| 				goto emitRemainder
 | |
| 			}
 | |
| 
 | |
| 			// We could immediately start working at s now, but to improve
 | |
| 			// compression we first update the hash table at s-2, s-1 and at s. If
 | |
| 			// another emitCopy is not our next move, also calculate nextHash
 | |
| 			// at s+1. At least on GOARCH=amd64, these three hash calculations
 | |
| 			// are faster as one load64 call (with some shifts) instead of
 | |
| 			// three load32 calls.
 | |
| 			x := load6432(src, s-2)
 | |
| 			prevHash := hash(uint32(x))
 | |
| 
 | |
| 			e.table[prevHash&tableMask] = tableEntryPrev{
 | |
| 				Prev: e.table[prevHash&tableMask].Cur,
 | |
| 				Cur:  tableEntry{offset: e.cur + s - 2, val: uint32(x)},
 | |
| 			}
 | |
| 			x >>= 8
 | |
| 			prevHash = hash(uint32(x))
 | |
| 
 | |
| 			e.table[prevHash&tableMask] = tableEntryPrev{
 | |
| 				Prev: e.table[prevHash&tableMask].Cur,
 | |
| 				Cur:  tableEntry{offset: e.cur + s - 1, val: uint32(x)},
 | |
| 			}
 | |
| 			x >>= 8
 | |
| 			currHash := hash(uint32(x))
 | |
| 			candidates := e.table[currHash&tableMask]
 | |
| 			cv = uint32(x)
 | |
| 			e.table[currHash&tableMask] = tableEntryPrev{
 | |
| 				Prev: candidates.Cur,
 | |
| 				Cur:  tableEntry{offset: s + e.cur, val: cv},
 | |
| 			}
 | |
| 
 | |
| 			// Check both candidates
 | |
| 			candidate = candidates.Cur
 | |
| 			if cv == candidate.val {
 | |
| 				offset := s - (candidate.offset - e.cur)
 | |
| 				if offset < maxMatchOffset {
 | |
| 					continue
 | |
| 				}
 | |
| 			} else {
 | |
| 				// We only check if value mismatches.
 | |
| 				// Offset will always be invalid in other cases.
 | |
| 				candidate = candidates.Prev
 | |
| 				if cv == candidate.val {
 | |
| 					offset := s - (candidate.offset - e.cur)
 | |
| 					if offset < maxMatchOffset {
 | |
| 						continue
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			cv = uint32(x >> 8)
 | |
| 			nextHash = hash(cv)
 | |
| 			s++
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| emitRemainder:
 | |
| 	if int(nextEmit) < len(src) {
 | |
| 		emitLiteral(dst, src[nextEmit:])
 | |
| 	}
 | |
| 	e.cur += int32(len(src))
 | |
| 	e.prev = e.prev[:len(src)]
 | |
| 	copy(e.prev, src)
 | |
| }
 | |
| 
 | |
| // snappyL4
 | |
| type snappyL4 struct {
 | |
| 	snappyL3
 | |
| }
 | |
| 
 | |
| // Encode uses a similar algorithm to level 3,
 | |
| // but will check up to two candidates if first isn't long enough.
 | |
| func (e *snappyL4) Encode(dst *tokens, src []byte) {
 | |
| 	const (
 | |
| 		inputMargin            = 16 - 1
 | |
| 		minNonLiteralBlockSize = 1 + 1 + inputMargin
 | |
| 		matchLenGood           = 12
 | |
| 	)
 | |
| 
 | |
| 	// Ensure that e.cur doesn't wrap, mainly an issue on 32 bits.
 | |
| 	if e.cur > 1<<30 {
 | |
| 		for i := range e.table {
 | |
| 			e.table[i] = tableEntryPrev{}
 | |
| 		}
 | |
| 		e.cur = maxStoreBlockSize
 | |
| 	}
 | |
| 
 | |
| 	// This check isn't in the Snappy implementation, but there, the caller
 | |
| 	// instead of the callee handles this case.
 | |
| 	if len(src) < minNonLiteralBlockSize {
 | |
| 		// We do not fill the token table.
 | |
| 		// This will be picked up by caller.
 | |
| 		dst.n = uint16(len(src))
 | |
| 		e.cur += maxStoreBlockSize
 | |
| 		e.prev = e.prev[:0]
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// sLimit is when to stop looking for offset/length copies. The inputMargin
 | |
| 	// lets us use a fast path for emitLiteral in the main loop, while we are
 | |
| 	// looking for copies.
 | |
| 	sLimit := int32(len(src) - inputMargin)
 | |
| 
 | |
| 	// nextEmit is where in src the next emitLiteral should start from.
 | |
| 	nextEmit := int32(0)
 | |
| 	s := int32(0)
 | |
| 	cv := load3232(src, s)
 | |
| 	nextHash := hash(cv)
 | |
| 
 | |
| 	for {
 | |
| 		// Copied from the C++ snappy implementation:
 | |
| 		//
 | |
| 		// Heuristic match skipping: If 32 bytes are scanned with no matches
 | |
| 		// found, start looking only at every other byte. If 32 more bytes are
 | |
| 		// scanned (or skipped), look at every third byte, etc.. When a match
 | |
| 		// is found, immediately go back to looking at every byte. This is a
 | |
| 		// small loss (~5% performance, ~0.1% density) for compressible data
 | |
| 		// due to more bookkeeping, but for non-compressible data (such as
 | |
| 		// JPEG) it's a huge win since the compressor quickly "realizes" the
 | |
| 		// data is incompressible and doesn't bother looking for matches
 | |
| 		// everywhere.
 | |
| 		//
 | |
| 		// The "skip" variable keeps track of how many bytes there are since
 | |
| 		// the last match; dividing it by 32 (ie. right-shifting by five) gives
 | |
| 		// the number of bytes to move ahead for each iteration.
 | |
| 		skip := int32(32)
 | |
| 
 | |
| 		nextS := s
 | |
| 		var candidate tableEntry
 | |
| 		var candidateAlt tableEntry
 | |
| 		for {
 | |
| 			s = nextS
 | |
| 			bytesBetweenHashLookups := skip >> 5
 | |
| 			nextS = s + bytesBetweenHashLookups
 | |
| 			skip += bytesBetweenHashLookups
 | |
| 			if nextS > sLimit {
 | |
| 				goto emitRemainder
 | |
| 			}
 | |
| 			candidates := e.table[nextHash&tableMask]
 | |
| 			now := load3232(src, nextS)
 | |
| 			e.table[nextHash&tableMask] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}}
 | |
| 			nextHash = hash(now)
 | |
| 
 | |
| 			// Check both candidates
 | |
| 			candidate = candidates.Cur
 | |
| 			if cv == candidate.val {
 | |
| 				offset := s - (candidate.offset - e.cur)
 | |
| 				if offset < maxMatchOffset {
 | |
| 					offset = s - (candidates.Prev.offset - e.cur)
 | |
| 					if cv == candidates.Prev.val && offset < maxMatchOffset {
 | |
| 						candidateAlt = candidates.Prev
 | |
| 					}
 | |
| 					break
 | |
| 				}
 | |
| 			} else {
 | |
| 				// We only check if value mismatches.
 | |
| 				// Offset will always be invalid in other cases.
 | |
| 				candidate = candidates.Prev
 | |
| 				if cv == candidate.val {
 | |
| 					offset := s - (candidate.offset - e.cur)
 | |
| 					if offset < maxMatchOffset {
 | |
| 						break
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			cv = now
 | |
| 		}
 | |
| 
 | |
| 		// A 4-byte match has been found. We'll later see if more than 4 bytes
 | |
| 		// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
 | |
| 		// them as literal bytes.
 | |
| 		emitLiteral(dst, src[nextEmit:s])
 | |
| 
 | |
| 		// Call emitCopy, and then see if another emitCopy could be our next
 | |
| 		// move. Repeat until we find no match for the input immediately after
 | |
| 		// what was consumed by the last emitCopy call.
 | |
| 		//
 | |
| 		// If we exit this loop normally then we need to call emitLiteral next,
 | |
| 		// though we don't yet know how big the literal will be. We handle that
 | |
| 		// by proceeding to the next iteration of the main loop. We also can
 | |
| 		// exit this loop via goto if we get close to exhausting the input.
 | |
| 		for {
 | |
| 			// Invariant: we have a 4-byte match at s, and no need to emit any
 | |
| 			// literal bytes prior to s.
 | |
| 
 | |
| 			// Extend the 4-byte match as long as possible.
 | |
| 			//
 | |
| 			s += 4
 | |
| 			t := candidate.offset - e.cur + 4
 | |
| 			l := e.matchlen(s, t, src)
 | |
| 			// Try alternative candidate if match length < matchLenGood.
 | |
| 			if l < matchLenGood-4 && candidateAlt.offset != 0 {
 | |
| 				t2 := candidateAlt.offset - e.cur + 4
 | |
| 				l2 := e.matchlen(s, t2, src)
 | |
| 				if l2 > l {
 | |
| 					l = l2
 | |
| 					t = t2
 | |
| 				}
 | |
| 			}
 | |
| 			// matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
 | |
| 			dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
 | |
| 			dst.n++
 | |
| 			s += l
 | |
| 			nextEmit = s
 | |
| 			if s >= sLimit {
 | |
| 				goto emitRemainder
 | |
| 			}
 | |
| 
 | |
| 			// We could immediately start working at s now, but to improve
 | |
| 			// compression we first update the hash table at s-2, s-1 and at s. If
 | |
| 			// another emitCopy is not our next move, also calculate nextHash
 | |
| 			// at s+1. At least on GOARCH=amd64, these three hash calculations
 | |
| 			// are faster as one load64 call (with some shifts) instead of
 | |
| 			// three load32 calls.
 | |
| 			x := load6432(src, s-2)
 | |
| 			prevHash := hash(uint32(x))
 | |
| 
 | |
| 			e.table[prevHash&tableMask] = tableEntryPrev{
 | |
| 				Prev: e.table[prevHash&tableMask].Cur,
 | |
| 				Cur:  tableEntry{offset: e.cur + s - 2, val: uint32(x)},
 | |
| 			}
 | |
| 			x >>= 8
 | |
| 			prevHash = hash(uint32(x))
 | |
| 
 | |
| 			e.table[prevHash&tableMask] = tableEntryPrev{
 | |
| 				Prev: e.table[prevHash&tableMask].Cur,
 | |
| 				Cur:  tableEntry{offset: e.cur + s - 1, val: uint32(x)},
 | |
| 			}
 | |
| 			x >>= 8
 | |
| 			currHash := hash(uint32(x))
 | |
| 			candidates := e.table[currHash&tableMask]
 | |
| 			cv = uint32(x)
 | |
| 			e.table[currHash&tableMask] = tableEntryPrev{
 | |
| 				Prev: candidates.Cur,
 | |
| 				Cur:  tableEntry{offset: s + e.cur, val: cv},
 | |
| 			}
 | |
| 
 | |
| 			// Check both candidates
 | |
| 			candidate = candidates.Cur
 | |
| 			candidateAlt = tableEntry{}
 | |
| 			if cv == candidate.val {
 | |
| 				offset := s - (candidate.offset - e.cur)
 | |
| 				if offset < maxMatchOffset {
 | |
| 					offset = s - (candidates.Prev.offset - e.cur)
 | |
| 					if cv == candidates.Prev.val && offset < maxMatchOffset {
 | |
| 						candidateAlt = candidates.Prev
 | |
| 					}
 | |
| 					continue
 | |
| 				}
 | |
| 			} else {
 | |
| 				// We only check if value mismatches.
 | |
| 				// Offset will always be invalid in other cases.
 | |
| 				candidate = candidates.Prev
 | |
| 				if cv == candidate.val {
 | |
| 					offset := s - (candidate.offset - e.cur)
 | |
| 					if offset < maxMatchOffset {
 | |
| 						continue
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			cv = uint32(x >> 8)
 | |
| 			nextHash = hash(cv)
 | |
| 			s++
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| emitRemainder:
 | |
| 	if int(nextEmit) < len(src) {
 | |
| 		emitLiteral(dst, src[nextEmit:])
 | |
| 	}
 | |
| 	e.cur += int32(len(src))
 | |
| 	e.prev = e.prev[:len(src)]
 | |
| 	copy(e.prev, src)
 | |
| }
 | |
| 
 | |
| func (e *snappyGen) matchlen(s, t int32, src []byte) int32 {
 | |
| 	s1 := int(s) + maxMatchLength - 4
 | |
| 	if s1 > len(src) {
 | |
| 		s1 = len(src)
 | |
| 	}
 | |
| 
 | |
| 	// If we are inside the current block
 | |
| 	if t >= 0 {
 | |
| 		b := src[t:]
 | |
| 		a := src[s:s1]
 | |
| 		b = b[:len(a)]
 | |
| 		// Extend the match to be as long as possible.
 | |
| 		for i := range a {
 | |
| 			if a[i] != b[i] {
 | |
| 				return int32(i)
 | |
| 			}
 | |
| 		}
 | |
| 		return int32(len(a))
 | |
| 	}
 | |
| 
 | |
| 	// We found a match in the previous block.
 | |
| 	tp := int32(len(e.prev)) + t
 | |
| 	if tp < 0 {
 | |
| 		return 0
 | |
| 	}
 | |
| 
 | |
| 	// Extend the match to be as long as possible.
 | |
| 	a := src[s:s1]
 | |
| 	b := e.prev[tp:]
 | |
| 	if len(b) > len(a) {
 | |
| 		b = b[:len(a)]
 | |
| 	}
 | |
| 	a = a[:len(b)]
 | |
| 	for i := range b {
 | |
| 		if a[i] != b[i] {
 | |
| 			return int32(i)
 | |
| 		}
 | |
| 	}
 | |
| 	n := int32(len(b))
 | |
| 	a = src[s+n : s1]
 | |
| 	b = src[:len(a)]
 | |
| 	for i := range a {
 | |
| 		if a[i] != b[i] {
 | |
| 			return int32(i) + n
 | |
| 		}
 | |
| 	}
 | |
| 	return int32(len(a)) + n
 | |
| }
 | |
| 
 | |
| // Reset the encoding table.
 | |
| func (e *snappyGen) Reset() {
 | |
| 	e.prev = e.prev[:0]
 | |
| 	e.cur += maxMatchOffset + 1
 | |
| }
 |